RESUMO
This study examines changes in gun violence at the census tract level in Philadelphia, PA before and after the onset of the COVID-19 pandemic. Piecewise generalized linear mixed effects models are used to test the relative impacts of social-structural and demographic factors, police activity, the presence of and proximity to drug markets, and physical incivilities on shooting changes between 2017 and June, 2021. Model results revealed that neighborhood structural characteristics like concentrated disadvantage and racial makeup, as well as proximity to drug markets and police activity were associated with higher shooting rates. Neighborhood drug market activity and police activity significantly predicted changes in shooting rates over time after the onset of COVID-19. This work demonstrates the importance of understanding whether there are unique factors that impact the susceptibility to exogenous shocks like the COVID-19 pandemic. The increasing risk of being in a neighborhood with an active drug market during the pandemic suggests efforts related to disrupting drug organizations, or otherwise curbing violence stemming from drug markets, may go a long way towards quelling citywide increases in gun violence.
Assuntos
COVID-19/epidemiologia , Violência com Arma de Fogo/estatística & dados numéricos , COVID-19/virologia , Bases de Dados Factuais , Tráfico de Drogas/estatística & dados numéricos , Humanos , Pandemias , Philadelphia/epidemiologia , Polícia , Racismo , Características de Residência , SARS-CoV-2/isolamento & purificaçãoRESUMO
The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone, baricitinib, paxlovid, and molnupiravir), or in advanced clinical trials. Vandetanib is a kinase inhibitor which targets the vascular endothelial growth factor receptor (VEGFR), the epidermal growth factor receptor (EGFR), as well as the RET-tyrosine kinase. In the current study, it was tested in different cell lines and showed promising results on inhibition versus the toxic effect on A549-hACE2 cells (IC50 0.79 µM) while also showing a reduction of >3 log TCID50/mL for HCoV-229E. The in vivo efficacy of vandetanib was assessed in a mouse model of SARS-CoV-2 infection and statistically significantly reduced the levels of IL-6, IL-10, and TNF-α and mitigated inflammatory cell infiltrates in the lungs of infected animals but did not reduce viral load. Vandetanib also decreased CCL2, CCL3, and CCL4 compared to the infected animals. Vandetanib additionally rescued the decreased IFN-1ß caused by SARS-CoV-2 infection in mice to levels similar to that in uninfected animals. Our results indicate that the FDA-approved anticancer drug vandetanib is worthy of further assessment as a potential therapeutic candidate to block the COVID-19 cytokine storm.
RESUMO
The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone, baricitinib) or in advanced clinical trials. We have tested 45 FDA-approved kinase inhibitors in vitro against murine hepatitis virus (MHV) as a model of SARS-CoV-2 replication and identified 12 showing inhibition in the delayed brain tumor (DBT) cell line. Vandetanib, which targets the vascular endothelial growth factor receptor (VEGFR), the epidermal growth factor receptor (EGFR), and the RET-tyrosine kinase showed the most promising results on inhibition versus toxic effect on SARS-CoV-2-infected Caco-2 and A549-hACE2 cells (IC50 0.79 µM) while also showing a reduction of > 3 log TCID50/mL for HCoV-229E. The in vivo efficacy of vandetanib was assessed in a mouse model of SARS-CoV-2 infection and statistically significantly reduced the levels of IL-6, IL-10, TNF-α, and mitigated inflammatory cell infiltrates in the lungs of infected animals but did not reduce viral load. Vandetanib rescued the decreased IFN-1ß caused by SARS-CoV-2 infection in mice to levels similar to that in uninfected animals. Our results indicate that the FDA-approved vandetanib is a potential therapeutic candidate for COVID-19 positioned for follow up in clinical trials either alone or in combination with other drugs to address the cytokine storm associated with this viral infection.
RESUMO
Severe acute respiratory coronavirus 2 (SARS-CoV-2) is a newly identified virus that has resulted in over 2.5 million deaths globally and over 116 million cases globally in March, 2021. Small-molecule inhibitors that reverse disease severity have proven difficult to discover. One of the key approaches that has been widely applied in an effort to speed up the translation of drugs is drug repurposing. A few drugs have shown in vitro activity against Ebola viruses and demonstrated activity against SARS-CoV-2 in vivo. Most notably, the RNA polymerase targeting remdesivir demonstrated activity in vitro and efficacy in the early stage of the disease in humans. Testing other small-molecule drugs that are active against Ebola viruses (EBOVs) would appear a reasonable strategy to evaluate their potential for SARS-CoV-2. We have previously repurposed pyronaridine, tilorone, and quinacrine (from malaria, influenza, and antiprotozoal uses, respectively) as inhibitors of Ebola and Marburg viruses in vitro in HeLa cells and mouse-adapted EBOV in mice in vivo. We have now tested these three drugs in various cell lines (VeroE6, Vero76, Caco-2, Calu-3, A549-ACE2, HUH-7, and monocytes) infected with SARS-CoV-2 as well as other viruses (including MHV and HCoV 229E). The compilation of these results indicated considerable variability in antiviral activity observed across cell lines. We found that tilorone and pyronaridine inhibited the virus replication in A549-ACE2 cells with IC50 values of 180 nM and IC50 198 nM, respectively. We used microscale thermophoresis to test the binding of these molecules to the spike protein, and tilorone and pyronaridine bind to the spike receptor binding domain protein with K d values of 339 and 647 nM, respectively. Human Cmax for pyronaridine and quinacrine is greater than the IC50 observed in A549-ACE2 cells. We also provide novel insights into the mechanism of these compounds which is likely lysosomotropic.
RESUMO
BACKGROUND: Previous research demonstrated that registries are effective for improving clinical guideline adherence for the care of patients with type 2 diabetes. However, registry implementation has typically relied on intensive support (such as practice facilitators) for practice change and care improvement. OBJECTIVE: To determine whether a remotely delivered, low-intensity organizational change intervention supports implementation and use of diabetes registries in primary care. DESIGN: Cluster-randomized controlled effectiveness trial of providing limited external support leveraging internal practice resources and problem-solving capacities for driving diabetes registry implementation in 32 practices in Virginia. INTERVENTION: All practices identified local implementation champions who participated in an in-person education session on the value and use of diabetes registries, while intervention practices were also paired with peer mentors and had access to a physician informaticist, who worked remotely to assist practices with implementation. MAIN MEASURES: Practice champions reported progress on registry implementation milestone achievement, and reported practice-level organizational capacity by using a modified version of the Assessment of Chronic Illness Care (ACIC). KEY RESULTS: Intervention practices were significantly more likely to have implemented a registry (44% vs 6%, P = .04) and to have achieved more implementation milestones (5.5 vs 2.6, P < .0001) than control practices. Baseline ACIC scores indicated room for organizational improvement with regard to chronic illness care (overall median, 6.4; range, 3.8 to 10.8) and clinical information systems use (median, 6.0; range, 0 to 11) with no significant differences between intervention and control practices. CONCLUSIONS: Remotely provided guidance paired with limited in-person assistance can support rapid implementation of diabetes registries in typical primary care practices.
Assuntos
Diabetes Mellitus Tipo 2 , Atenção Primária à Saúde , Sistema de Registros , Assistência Ambulatorial , Diabetes Mellitus Tipo 2/terapia , Humanos , Avaliação de Resultados em Cuidados de Saúde , Atenção Primária à Saúde/organização & administração , VirginiaRESUMO
SARS-CoV-2 is a newly identified virus that has resulted in over 1.3 M deaths globally and over 59 M cases globally to date. Small molecule inhibitors that reverse disease severity have proven difficult to discover. One of the key approaches that has been widely applied in an effort to speed up the translation of drugs is drug repurposing. A few drugs have shown in vitro activity against Ebola virus and demonstrated activity against SARS-CoV-2 in vivo . Most notably the RNA polymerase targeting remdesivir demonstrated activity in vitro and efficacy in the early stage of the disease in humans. Testing other small molecule drugs that are active against Ebola virus would seem a reasonable strategy to evaluate their potential for SARS-CoV-2. We have previously repurposed pyronaridine, tilorone and quinacrine (from malaria, influenza, and antiprotozoal uses, respectively) as inhibitors of Ebola and Marburg virus in vitro in HeLa cells and of mouse adapted Ebola virus in mouse in vivo . We have now tested these three drugs in various cell lines (VeroE6, Vero76, Caco-2, Calu-3, A549-ACE2, HUH-7 and monocytes) infected with SARS-CoV-2 as well as other viruses (including MHV and HCoV 229E). The compilation of these results indicated considerable variability in antiviral activity observed across cell lines. We found that tilorone and pyronaridine inhibited the virus replication in A549-ACE2 cells with IC 50 values of 180 nM and IC 50 198 nM, respectively. We have also tested them in a pseudovirus assay and used microscale thermophoresis to test the binding of these molecules to the spike protein. They bind to spike RBD protein with K d values of 339 nM and 647 nM, respectively. Human C max for pyronaridine and quinacrine is greater than the IC 50 hence justifying in vivo evaluation. We also provide novel insights into their mechanism which is likely lysosomotropic.