Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
FASEB J ; 34(7): 9223-9244, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32401417

RESUMO

We previously identified a 210 kb region on chromosome 11 (50.37-50.58 Mb, mm10) containing two protein-coding genes (Hnrnph1, Rufy1) that was necessary for reduced methamphetamine-induced locomotor activity in C57BL/6J congenic mice harboring DBA/2J polymorphisms. Gene editing of a small deletion in the first coding exon supported Hnrnph1 as a quantitative trait gene. We have since shown that Hnrnph1 mutants also exhibit reduced methamphetamine-induced reward, reinforcement, and dopamine release. However, the quantitative trait variants (QTVs) that modulate Hnrnph1 function at the molecular level are not known. Nine single nucleotide polymorphisms and seven indels distinguish C57BL/6J from DBA/2J within Hnrnph1, including four variants within the 5' untranslated region (UTR). Here, we show that a 114 kb introgressed region containing Hnrnph1 and Rufy1 was sufficient to cause a decrease in MA-induced locomotor activity. Gene-level transcriptome analysis of striatal tissue from 114 kb congenics vs Hnrnph1 mutants identified a nearly perfect correlation of fold-change in expression for those differentially expressed genes that were common to both mouse lines, indicating functionally similar effects on the transcriptome and behavior. Exon-level analysis (including noncoding exons) revealed decreased 5' UTR usage of Hnrnph1 and immunoblot analysis identified a corresponding decrease in hnRNP H protein in 114 kb congenic mice. Molecular cloning of the Hnrnph1 5' UTR containing all four variants (but none of them individually) upstream of a reporter induced a decrease in reporter signal in both HEK293 and N2a cells, thus, identifying a set of QTVs underlying molecular regulation of Hnrnph1.


Assuntos
Regiões 5' não Traduzidas , Resistência a Medicamentos/genética , Éxons , Ribonucleoproteínas Nucleares Heterogêneas/genética , Metanfetamina/farmacologia , Atividade Motora , Polimorfismo Genético , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , RNA Mensageiro
2.
Appetite ; 150: 104678, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32209386

RESUMO

Binge eating is a heritable symptom of eating disorders with an unknown genetic etiology. Rodent models for binge-like eating (BLE) of palatable food permit the study of genetic and biological mechanisms. We previously genetically mapped a coding mutation in Cyfip2 associated with increased BLE of sweetened palatable food in the C57BL/6NJ versus C57BL/6J substrain. The increase in BLE in C57BL/6NJ mice was associated with a decrease in transcription of genes enriched for myelination in the striatum. Here, we tested the hypothesis that decreasing myelin levels with the demyelinating agent cuprizone would enhance BLE. Mice were treated with a 0.3% cuprizone home cage diet for two weeks. Cuprizone induced similar weight loss in both substrains and sexes that recovered within 48 h after removal of cuprizone. Following a three-week recovery period, mice were trained for BLE in an intermittent, limited access procedure. Surprisingly, cuprizone significantly reduced BLE in male but not female C57BL/6NJ mice while having no effect in C57BL/6J mice. Cuprizone also reduced myelin basic protein (MBP) at seven weeks post-cuprizone removal while having no effect on myelin-associated glycoprotein at this time point. C57BL/6NJ mice also showed less MBP than C57BL/6J mice. There were no statistical interactions of Treatment with Sex on MBP levels, indicating that differences in MBP reduction are unlikely to account for sex differences in BLE. To summarize, cuprizone induced an unexpected, significant reduction in BLE in C57BL/6NJ males, which could indicate genotype-dependent sex differences in the biological mechanisms of BLE.


Assuntos
Transtorno da Compulsão Alimentar/tratamento farmacológico , Cuprizona/farmacologia , Bainha de Mielina/efeitos dos fármacos , Proteínas do Tecido Nervoso/farmacologia , Caracteres Sexuais , Animais , Transtorno da Compulsão Alimentar/genética , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Mol Pain ; 15: 1744806918825046, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30632432

RESUMO

Sensitivity to different pain modalities has a genetic basis that remains largely unknown. Employing closely related inbred mouse substrains can facilitate gene mapping of nociceptive behaviors in preclinical pain models. We previously reported enhanced sensitivity to acute thermal nociception in C57BL/6J (B6J) versus C57BL/6N (B6N) substrains. Here, we expanded on nociceptive phenotypes and observed an increase in formalin-induced inflammatory nociceptive behaviors and paw diameter in B6J versus B6N mice (Charles River Laboratories). No strain differences were observed in mechanical or thermal hypersensitivity or in edema following the Complete Freund's Adjuvant model of inflammatory pain, indicating specificity in the inflammatory nociceptive stimulus. In the chronic constrictive nerve injury, a model of neuropathic pain, no strain differences were observed in baseline mechanical threshold or in mechanical hypersensitivity up to one month post-chronic constrictive nerve injury. We replicated the enhanced thermal nociception in the 52.5°C hot plate test in B6J versus B6N mice from The Jackson Laboratory. Using a B6J × B6N-F2 cross (N = 164), we mapped a major quantitative trait locus underlying hot plate sensitivity to chromosome 7 that peaked at 26 Mb (log of the odds [LOD] = 3.81, p < 0.01; 8.74 Mb-36.50 Mb) that was more pronounced in males. Genes containing expression quantitative trait loci associated with the peak nociceptive marker that are implicated in pain and inflammation include Ryr1, Cyp2a5, Pou2f2, Clip3, Sirt2, Actn4, and Ltbp4 (false discovery rate < 0.05). Future studies involving positional cloning and gene editing will determine the quantitative trait gene(s) and potential pleiotropy of this locus across pain modalities.


Assuntos
Mapeamento Cromossômico , Hiperalgesia/etiologia , Inflamação/complicações , Inflamação/genética , Neuralgia/complicações , Neuralgia/genética , Animais , Modelos Animais de Doenças , Feminino , Formaldeído/toxicidade , Adjuvante de Freund/toxicidade , Inflamação/induzido quimicamente , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL/classificação , Neuralgia/induzido quimicamente , Neuralgia/patologia , Medição da Dor , Limiar da Dor/fisiologia , RNA Mensageiro/metabolismo , Especificidade da Espécie
4.
J Biol Chem ; 290(20): 12487-96, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25770209

RESUMO

The phospho-binding protein 14-3-3ζ acts as a signaling hub controlling a network of interacting partners and oncogenic pathways. We show here that lysines within the 14-3-3ζ binding pocket and protein-protein interface can be modified by acetylation. The positive charge on two of these lysines, Lys(49) and Lys(120), is critical for coordinating 14-3-3ζ-phosphoprotein interactions. Through screening, we identified HDAC6 as the Lys(49)/Lys(120) deacetylase. Inhibition of HDAC6 blocks 14-3-3ζ interactions with two well described interacting partners, Bad and AS160, which triggers their dephosphorylation at Ser(112) and Thr(642), respectively. Expression of an acetylation-refractory K49R/K120R mutant of 14-3-3ζ rescues both the HDAC6 inhibitor-induced loss of interaction and Ser(112)/Thr(642) phosphorylation. Furthermore, expression of the K49R/K120R mutant of 14-3-3ζ inhibits the cytotoxicity of HDAC6 inhibition. These data demonstrate a novel role for HDAC6 in controlling 14-3-3ζ binding activity.


Assuntos
Proteínas 14-3-3/metabolismo , Histona Desacetilases/metabolismo , Proteínas 14-3-3/genética , Acetilação , Substituição de Aminoácidos , Sítios de Ligação , Sobrevivência Celular/genética , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Células HEK293 , Desacetilase 6 de Histona , Histona Desacetilases/genética , Humanos , Lisina/genética , Lisina/metabolismo , Mutação de Sentido Incorreto , Proteína de Morte Celular Associada a bcl/genética , Proteína de Morte Celular Associada a bcl/metabolismo
5.
Stem Cells ; 33(6): 1902-14, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25809552

RESUMO

Bone marrow-derived mesenchymal stem cells (BMSC) modulate inflammatory/immune responses and promote motor functional recovery after spinal cord injury (SCI). However, the effects of BMSC transplantation on central neuropathic pain and neuronal hyperexcitability after SCI remain elusive. This is of importance because BMSC-based therapies have been proposed for clinical treatment. We investigated the effects of BMSC transplantation on pain hypersensitivity in green fluorescent protein (GFP)-positive bone marrow-chimeric mice subjected to a contusion SCI, and the mechanisms of such effects. BMSC transplantation at day 3 post-SCI improved motor function and relieved SCI-induced hypersensitivities to mechanical and thermal stimulation. The pain improvements were mediated by suppression of protein kinase C-γ and phosphocyclic AMP response element binding protein expression in dorsal horn neurons. BMSC transplants significantly reduced levels of p-p38 mitogen-activated protein kinase and extracellular signal-regulated kinase (p-ERK1/2) in both hematogenous macrophages and resident microglia and significantly reduced the infiltration of CD11b and GFP double-positive hematogenous macrophages without decreasing the CD11b-positive and GFP-negative activated spinal-microglia population. BMSC transplants prevented hematogenous macrophages recruitment by restoration of the blood-spinal cord barrier (BSCB), which was associated with decreased levels of (a) inflammatory cytokines (tumor necrosis factor-α, interleukin-6); (b) mediators of early secondary vascular pathogenesis (matrix metallopeptidase 9); (c) macrophage recruiting factors (CCL2, CCL5, and CXCL10), but increased levels of a microglial stimulating factor (granulocyte-macrophage colony-stimulating factor). These findings support the use of BMSC transplants for SCI treatment. Furthermore, they suggest that BMSC reduce neuropathic pain through a variety of related mechanisms that include neuronal sparing and restoration of the disturbed BSCB, mediated through modulation of the activity of spinal-resident microglia and the activity and recruitment of hematogenous macrophages.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Neuralgia/etiologia , Traumatismos da Medula Espinal/terapia , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Inflamação/prevenção & controle , Inflamação/terapia , Macrófagos/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Neurônios/metabolismo , Recuperação de Função Fisiológica/fisiologia , Transdução de Sinais , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/patologia
6.
bioRxiv ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36711727

RESUMO

Inactivating mutations in ATRX characterize large subgroups of malignant gliomas in adults and children. ATRX deficiency in glioma induces widespread chromatin remodeling, driving transcriptional shifts and oncogenic phenotypes. Effective strategies to therapeutically target these broad epigenomic sequelae remain undeveloped. We utilized integrated mulit-omics and the Broad Institute Connectivity Map (CMAP) to identify drug candidates that could potentially revert ATRX-deficient transcriptional changes. We then employed disease-relevant experimental models to evaluate functional phenotypes, coupling these studies with epigenomic profiling to elucidate molecular mechanim(s). CMAP analysis and transcriptional/epigenomic profiling implicated the Class III HDAC Sirtuin2 (Sirt2) as a central mediator of ATRX-deficient cellular phenotypes and a driver of unfavorable prognosis in ATRX-deficient glioma. Sirt2 inhibitors reverted Atrx-deficient transcriptional signatures in murine neuroprogenitor cells (mNPCs) and impaired cell migration in Atrx/ATRX-deficient mNPCs and human glioma stem cells (GSCs). While effects on cellular proliferation in these contexts were more modest, markers of senescence significantly increased, suggesting that Sirt2 inhibition promotes terminal differentiation in ATRX-deficient glioma. These phenotypic effects were accompanied by genome-wide shifts in enhancer-associated H3K27ac and H4K16ac marks, with the latter in particular demonstrating compelling transcriptional links to Sirt2-dependent phenotypic reversals. Motif analysis of these data identified the transcription factor KLF16 as a mediator of phenotype reversal in Atrx-deficient cells upon Sirt2 inhibition. Finally, Sirt2 inhibition impaired growth and increased senescence in ATRX-deficient GSCs in vivo . Our findings indicate that Sirt2 inhibition selectively targets ATRX-deficient gliomas through global chromatin remodeling, while demonstrating more broadly a viable approach to combat complex epigenetic rewiring in cancer. One Sentence Summary: Our study demonstrates that SIRT2 inhibition promotes senescence in ATRX-deficient glioma model systems through global epigenomic remodeling, impacting key downstream transcriptional profiles.

7.
Stem Cell Rev Rep ; 19(8): 2918-2928, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37674016

RESUMO

Conditioned medium obtained from bone marrow-derived stem cells has been proposed as a novel cell-free therapy in spinal cord injury and neuropathic pain, yet the direct effect on spinal neuron function has never been investigated. Here, we adopted spinal cord organotypic cultures (SCOCs) as an experimental model to probe the effect of ST2 murine mesenchymal stem cells-conditioned medium (ST2-CM) on dorsal horn (DH) neuron functional properties. Three days of SCOC exposure to ST2-CM increased neuronal activity measured by Fos expression, as well as spontaneous or induced firing. We showed that the increase in neuronal excitability was associated with changes in both intrinsic membrane properties and an enhanced excitatory drive. The increased excitability at the single-cell level was substantiated at the network level by detecting synchronous bursts of calcium waves across DH neurons. Altogether, SCOCs represent a viable tool to probe mesenchymal cells' effect on intact neuronal networks. Our findings indicate that ST2-CM enhances neuronal activity and synaptic wiring in the spinal dorsal horn. Our data also support the trophic role of mesenchymal cells CM in maintaining network activity in spinal circuits.


Assuntos
Meios de Cultivo Condicionados , Corno Dorsal da Medula Espinal , Transmissão Sináptica , Animais , Camundongos , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Células do Corno Posterior/metabolismo , Corno Dorsal da Medula Espinal/metabolismo
8.
Stem Cells ; 29(2): 169-78, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21732476

RESUMO

Transplantation of bone marrow stem cells into spinal cord lesions enhances axonal regeneration and promotes functional recovery in animal studies. There are two types of adult bone marrow stem cell; hematopoietic stem cells (HSCs), and mesenchymal stem cells (MSCs). The mechanisms by which HSCs and MSCs might promote spinal cord repair following transplantation have been extensively investigated. The objective of this review is to discuss these mechanisms; we briefly consider the controversial topic of HSC and MSC transdifferentiation into central nervous system cells but focus on the neurotrophic, tissue sparing, and reparative action of MSC grafts in the context of the spinal cord injury (SCI) milieu. We then discuss some of the specific issues related to the translation of HSC and MSC therapies for patients with SCI and present a comprehensive critique of the current bone marrow cell clinical trials for the treatment of SCI to date.


Assuntos
Transplante de Medula Óssea/métodos , Medula Óssea , Transplante de Células-Tronco Hematopoéticas/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Traumatismos da Medula Espinal/cirurgia , Regeneração da Medula Espinal/fisiologia , Animais , Medula Óssea/imunologia , Humanos
9.
Eur Spine J ; 21(3): 490-7, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21935678

RESUMO

INTRODUCTION: Cervical compressive myelopathy is the most serious complication of cervical spondylosis or ossification of the posterior longitudinal ligament (OPLL) and the most frequent cause of spinal cord dysfunction. There is little information on the exact pathophysiological mechanism responsible for the progressive loss of neural tissue in the spinal cord of such patients. In this study, we used the spinal hyperostotic mouse (twy/twy) as a suitable model of human spondylosis, and OPLL to investigate the cellular and molecular changes in the spinal cord. Mutant twy/twy mouse developed ossification of the ligamentum flavum at C2-C3 and exhibited progressive paralysis. MATERIALS AND METHODS: The mutant twy/twy mice, aged 16 and 24 weeks, were used in the present study. The cervical spinal cord was analyzed histologically and immunohistochemically. RESULTS: We observed that a significant correlation between the proportion of apoptotic oligodendrocytes in the compressed area of the spinal cord and the magnitude of cord compression. Immunohistochemical analysis indicated overexpression of TNFR1, CD95, and p75NTR in the twy/twy mice, which was localized by the immunofluorescence in the neurons and oligodendrocytes. CONCLUSION: The expression of such factors seems to play at least some role in the apoptotic process, which probably contributes to axonal degeneration and demyelination in the twy/twy mice spinal cords with severe compression.


Assuntos
Apoptose/genética , Neurônios/patologia , Oligodendroglia/patologia , Compressão da Medula Espinal/patologia , Medula Espinal/patologia , Espondilose/complicações , Animais , Modelos Animais de Doenças , Feminino , Humanos , Hiperostose/complicações , Hiperostose/genética , Hiperostose/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Mutantes , Neurônios/metabolismo , Oligodendroglia/metabolismo , Compressão da Medula Espinal/etiologia , Compressão da Medula Espinal/genética , Espondilose/genética , Espondilose/patologia
10.
Eur Spine J ; 21(1): 149-55, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21850419

RESUMO

INTRODUCTION: Ossification of the posterior longitudinal ligament (OPLL) is a significantly critical pathology that can eventually cause serious myelopathy. Ossification commences in the vertebral posterior longitudinal ligaments, and intensifies and spreads with the progression of the disease, resulting in osseous projections and compression of the spinal cord. However, the paucity of histological studies the underlying mechanisms of calcification and ossification processes remain obscure. The pathological process could be simulated in the ossifying process of the ligament in mutant spinal hyperostotic mouse (twy/twy). The aim of this study is to observe that enlargement of the nucleus pulposus followed by herniation, disruption and regenerative proliferation of annulus fibrosus cartilaginous tissues participated in the initiation of ossification of the posterior longitudinal ligament of twy/twy mice. MATERIALS AND METHODS: The mutant twy/twy mice (6 to 22-week-old) were used in the present study. The vertebral column was analyzed histologically and immunohistochemically. RESULTS: We observed that the enlargement of the nucleus pulposus followed by herniation, disruption and regenerative proliferation of annulus fibrosus cartilaginous tissues participated in the initiation of ossification of posterior longitudinal ligament of twy/twy mice. In this regards, the cells of the protruded hyperplastic annulus fibrosus invaded the longitudinal ligaments and induced neovascularization and metaplasia of primitive mesenchymal cells to osteoblasts in the spinal ligaments of twy/twy mice. CONCLUSION: Since genetic mechanisms could play a role in human OPLL, the age-related enlargement of the nucleus pulposus in the twy/twy mouse may primarily occur as a result of overproduction of mucopolysaccharide matrix material induced by certain genetic abnormalities.


Assuntos
Vértebras Cervicais/patologia , Deslocamento do Disco Intervertebral/genética , Deslocamento do Disco Intervertebral/patologia , Ossificação do Ligamento Longitudinal Posterior/genética , Ossificação do Ligamento Longitudinal Posterior/patologia , Ossificação Heterotópica/genética , Ossificação Heterotópica/patologia , Animais , Vértebras Cervicais/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Deslocamento do Disco Intervertebral/fisiopatologia , Masculino , Camundongos , Camundongos Mutantes Neurológicos , Ossificação do Ligamento Longitudinal Posterior/fisiopatologia , Ossificação Heterotópica/fisiopatologia
11.
Biology (Basel) ; 10(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809684

RESUMO

Animal models have been used in preclinical research to examine potential new treatments for spinal cord injury (SCI), including mesenchymal stem cell (MSC) transplantation. MSC transplants have been studied in early human trials. Whether the animal models represent the human studies is unclear. This systematic review and meta-analysis has examined the effects of MSC transplants in human and animal studies. Following searches of PubMed, Clinical Trials and the Cochrane Library, published papers were screened, and data were extracted and analysed. MSC transplantation was associated with significantly improved motor and sensory function in humans, and significantly increased locomotor function in animals. However, there are discrepancies between the studies of human participants and animal models, including timing of MSC transplant post-injury and source of MSCs. Additionally, difficulty in the comparison of functional outcome measures across species limits the predictive nature of the animal research. These findings have been summarised, and recommendations for further research are discussed to better enable the translation of animal models to MSC-based human clinical therapy.

12.
Biochem Biophys Rep ; 26: 100976, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33718633

RESUMO

Ex vivo spinal cord slice cultures (SCSC) allow study of spinal cord circuitry, maintaining stimuli responses comparable to live animals. Previously, we have shown that mesenchymal stem/stromal cell (MSC) transplantation in vivo reduced inflammation and increased nerve regeneration but MSC survival was short-lived, highlighting that beneficial action may derive from the secretome. Previous in vitro studies of MSC conditioned medium (CM) have also shown increased neuronal growth. In this study, murine SCSC were cultured in canine MSC CM (harvested from the adipose tissue of excised inguinal fat) and cell phenotypes analysed via immunohistochemistry and confocal microscopy. SCSC in MSC CM displayed enhanced viability after propidium iodide staining. GFAP immunoreactivity was significantly increased in SCSC in MSC CM compared to controls, but with no change in proteoglycan (NG2) immunoreactivity. In contrast, culture in MSC CM significantly decreased the prevalence of ßIII-tubulin immunoreactive neurites, whilst Ca2+ transients per cell were significantly increased. These ex vivo results contradict previous in vitro and in vivo reports of how MSC and their secretome may affect the microenvironment of the spinal cord after injury and highlight the importance of a careful comparison of the different experimental conditions used to assess the potential of cell therapies for the treatment of spinal cord injury.

13.
Biosci Rep ; 41(1)2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33289496

RESUMO

Drug repurposing is a cost-effective means of targeting new therapies for cancer. We have examined the effects of the repurposed drugs, bezafibrate, medroxyprogesterone acetate and valproic acid on human osteosarcoma cells, i.e., SAOS2 and MG63 compared with their normal cell counterparts, i.e. mesenchymal stem/stromal cells (MSCs). Cell growth, viability and migration were measured by biochemical assay and live cell imaging, whilst levels of lipid-synthesising enzymes were measured by immunoblotting cell extracts. These drug treatments inhibited the growth and survival of SAOS2 and MG63 cells most effectively when used in combination (termed V-BAP). In contrast, V-BAP treated MSCs remained viable with only moderately reduced cell proliferation. V-BAP treatment also inhibited migratory cell phenotypes. MG63 and SAOS2 cells expressed much greater levels of fatty acid synthase and stearoyl CoA desaturase 1 than MSCs, but these elevated enzyme levels significantly decreased in the V-BAP treated osteosarcoma cells prior to cell death. Hence, we have identified a repurposed drug combination that selectively inhibits the growth and survival of human osteosarcoma cells in association with altered lipid metabolism without adversely affecting their non-transformed cell counterparts.


Assuntos
Bezafibrato/administração & dosagem , Neoplasias Ósseas/patologia , Proliferação de Células/efeitos dos fármacos , Acetato de Medroxiprogesterona/administração & dosagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteossarcoma/patologia , Ácido Valproico/administração & dosagem , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/enzimologia , Linhagem Celular Tumoral , Regulação para Baixo , Reposicionamento de Medicamentos , Quimioterapia Combinada , Ácido Graxo Sintases/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/enzimologia , Estearoil-CoA Dessaturase/metabolismo , Regulação para Cima
14.
Genes Brain Behav ; 20(8): e12774, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34677900

RESUMO

Psychostimulant (methamphetamine, cocaine) use disorders have a genetic component that remains mostly unknown. We conducted genome-wide quantitative trait locus (QTL) analysis of methamphetamine stimulant sensitivity. To facilitate gene identification, we employed a Reduced Complexity Cross between closely related C57BL/6 mouse substrains and examined maximum speed and distance traveled over 30 min following methamphetamine (2 mg/kg, i.p.). For maximum methamphetamine-induced speed following the second and third administration, we identified a single genome-wide significant QTL on chromosome 11 that peaked near the Cyfip2 locus (LOD = 3.5, 4.2; peak = 21 cM [36 Mb]). For methamphetamine-induced distance traveled following the first and second administration, we identified a genome-wide significant QTL on chromosome 5 that peaked near a functional intronic indel in Gabra2 coding for the alpha-2 subunit of the GABA-A receptor (LOD = 3.6-5.2; peak = 34-35 cM [66-67 Mb]). Striatal cis-expression QTL mapping corroborated Gabra2 as a functional candidate gene underlying methamphetamine-induced distance traveled. CRISPR/Cas9-mediated correction of the mutant intronic deletion on the C57BL/6J background to the wild-type C57BL/6NJ allele was sufficient to reduce methamphetamine-induced locomotor activity toward the wild-type C57BL/6NJ-like level, thus validating the quantitative trait variant (QTV). These studies show the power and efficiency of Reduced Complexity Crosses in identifying causal variants underlying complex traits. Functionally restoring Gabra2 expression decreased methamphetamine stimulant sensitivity and supports preclinical and human genetic studies implicating the GABA-A receptor in psychostimulant addiction-relevant traits. Importantly, our findings have major implications for studying psychostimulants in the C57BL/6J strain-the gold standard strain in biomedical research.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/genética , Locos de Características Quantitativas , Receptores de GABA-A/genética , Animais , Estimulantes do Sistema Nervoso Central/toxicidade , Feminino , Predisposição Genética para Doença , Masculino , Metanfetamina/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Característica Quantitativa Herdável
15.
BMC Neurosci ; 11: 84, 2010 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-20663127

RESUMO

BACKGROUND: The application of mechanical insults to the spinal cord results in profound cellular and molecular changes, including the induction of neuronal cell death and altered gene expression profiles. Previous studies have described alterations in gene expression following spinal cord injury, but the specificity of this response to mechanical stimuli is difficult to investigate in vivo. Therefore, we have investigated the effect of cyclic tensile stresses on cultured spinal cord cells from E15 Sprague-Dawley rats, using the FX3000 Flexercell Strain Unit. We examined cell morphology and viability over a 72 hour time course. Microarray analysis of gene expression was performed using the Affymetrix GeneChip System, where categorization of identified genes was performed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) systems. Changes in expression of 12 genes were validated with quantitative real-time reverse transcription polymerase chain reaction (RT-PCR). RESULTS: The application of cyclic tensile stress reduced the viability of cultured spinal cord cells significantly in a dose- and time-dependent manner. Increasing either the strain or the strain rate independently was associated with significant decreases in spinal cord cell survival. There was no clear evidence of additive effects of strain level with strain rate. GO analysis identified 44 candidate genes which were significantly related to "apoptosis" and 17 genes related to "response to stimulus". KEGG analysis identified changes in the expression levels of 12 genes of the mitogen-activated protein kinase (MAPK) signaling pathway, which were confirmed to be upregulated by RT-PCR analysis. CONCLUSIONS: We have demonstrated that spinal cord cells undergo cell death in response to cyclic tensile stresses, which were dose- and time-dependent. In addition, we have identified the up regulation of various genes, in particular of the MAPK pathway, which may be involved in this cellular response. These data may prove useful, as the accurate knowledge of neuronal gene expression in response to cyclic tensile stress will help in the development of molecular-based therapies for spinal cord injury.


Assuntos
Apoptose/genética , Neurônios/metabolismo , Medula Espinal/metabolismo , Estresse Mecânico , Estresse Fisiológico/genética , Animais , Células Cultivadas , Análise por Conglomerados , Perfilação da Expressão Gênica , Sistema de Sinalização das MAP Quinases/genética , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Medula Espinal/citologia , Fatores de Tempo , Regulação para Cima/genética
16.
Artigo em Inglês | MEDLINE | ID: mdl-20708705

RESUMO

Terrestrial amphibians obtain water by absorption across a specialized region of the ventral skin and exhibit a behavior, the water absorption response (WR) to place that region in contact with moist surfaces. Spadefoot toads (Scaphiopus couchii) spend dry months of the year in burrows, then emerge during brief periods of summer rainfall and seek water sources for rehydration and reproduction. We tested the hypothesis that these toads have changes in plasma and/or central angiotensin concentrations that are associated with seasonal emergence and WR behavior. Immunoreactive concentrations of combined angiotensin II and III (ir-ANG) were measured in plasma samples and microdissected regions of brain tissue taken from toads moving across the road or toads showing WR behavior in shallow puddles on the road. Plasma ir-ANG concentrations were not significantly different between these groups, but were significantly higher in the periventricular region of the hypothalamus in toads showing WR behavior. Concentrations in other brain regions, while highly variable among individuals, were not different between groups. Within the context of the natural history of a specialized desert toad, these results support the hypothesis that ir-ANG is associated with WR behavior in spadefoot toads in a manner analogous to oral drinking exhibited by other vertebrate clades.


Assuntos
Angiotensinas/sangue , Anuros/sangue , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Clima Desértico , Água/farmacologia , Animais , Anuros/fisiologia , Masculino , Especificidade de Órgãos/efeitos dos fármacos , Concentração Osmolar , Sede/efeitos dos fármacos
17.
Heart Surg Forum ; 13(5): E311-6, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20961831

RESUMO

BACKGROUND: Postoperative atrial fibrillation (AF) is a significant complication following open heart surgery, with potentially serious clinical and economic implications. To assess the effect of a novel procedure, pericardial reconstruction using a porcine-derived extracellular matrix (ECM) implant, on the risk of postoperative AF after primary isolated coronary artery bypass grafting (CABG), we performed a retrospective comparison of the incidence of postoperative AF in patients who underwent this procedure versus an untreated control group. METHODS: We performed a retrospective comparison of the incidence of postoperative AF in 111 patients who underwent a pericardial reconstruction procedure with the CorMatrix ECM for Pericardial Closure (CorMatrix Cardiovascular, Atlanta, GA, USA) following primary isolated CABG, versus a control group of 111 patients who did not undergo pericardial reconstruction. RESULTS: Postoperative AF occurred in 43 of 111 control patients (39%; lower control limit [LCL], 30%; upper control limit [UCL], 49%) but in only 20 of 111 treated patients (18%; LCL, 11%; UCL, 27%). This result represents a 54% reduction in relative risk in the treatment group (P < .001). There was a small but statistically insignificant decrease in the hospital length of stay for the treated patients. The 2 treatment groups exhibited similar postoperative complication profiles. CONCLUSIONS: In this retrospective study, pericardial reconstruction with the ECM implant contributed directly to a statistically significant and clinically meaningful reduction in the rate of postoperative AF in patients undergoing primary isolated CABG. A prospective multicenter randomized trial has been planned to further test this approach.


Assuntos
Fibrilação Atrial/prevenção & controle , Ponte de Artéria Coronária/efeitos adversos , Matriz Extracelular/transplante , Pericárdio/cirurgia , Procedimentos de Cirurgia Plástica/métodos , Próteses e Implantes , Adulto , Idoso , Idoso de 80 Anos ou mais , Fibrilação Atrial/etiologia , Fibrilação Atrial/fisiopatologia , Eletrocardiografia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias , Desenho de Prótese , Estudos Retrospectivos , Fatores de Risco , Transplante Heterólogo , Resultado do Tratamento
18.
Biomolecules ; 10(9)2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32916959

RESUMO

The majority of research into the effects of mesenchymal stem cell (MSC) transplants on spinal cord injury (SCI) is performed in rodent models, which may help inform on mechanisms of action, but does not represent the scale and wound heterogeneity seen in human SCI. In contrast, SCI in dogs occurs naturally, is more akin to human SCI, and can be used to help address important aspects of the development of human MSC-based therapies. To enable translation to the clinic and comparison across species, we have examined the paracrine, regenerative capacity of human and canine adipose-derived MSCs in vitro. MSCs were initially phenotyped according to tissue culture plastic adherence, cluster of differentiation (CD) immunoprofiling and tri-lineage differentiation potential. Conditioned medium (CM) from MSC cultures was then assessed for its neurotrophic and angiogenic activity using established cell-based assays. MSC CM significantly increased neuronal cell proliferation, neurite outgrowth, and ßIII tubulin immunopositivity. In addition, MSC CM significantly increased endothelial cell migration, cell proliferation and the formation of tubule-like structures in Matrigel assays. There were no marked or significant differences in the capacity of human or canine MSC CM to stimulate neuronal cell or endothelial cell activity. Hence, this study supports the use of MSC transplants for canine SCI; furthermore, it increases understanding of how this may subsequently provide useful information and translate to MSC transplants for human SCI.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Traumatismos da Medula Espinal/terapia , Animais , Linhagem Celular , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Colágeno , Meios de Cultivo Condicionados , Cães , Combinação de Medicamentos , Células Endoteliais/fisiologia , Humanos , Técnicas In Vitro , Laminina , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica , Crescimento Neuronal/fisiologia , Neurônios/fisiologia , Comunicação Parácrina , Proteoglicanas , Tubulina (Proteína)/metabolismo
19.
Sci Rep ; 9(1): 3194, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816233

RESUMO

CD271 is a marker of bone marrow MSCs with enhanced differentiation capacity for bone or cartilage repair. However, the nature of CD271+ MSCs from adipose tissue (AT) is less well understood. Here, we investigated the differentiation, wound healing and angiogenic capacity of plastic adherent MSCs (PA MSCs) versus CD271+ MSCs from AT. There was no difference in the extent to which PA MSCs and CD271+ MSCs formed osteoblasts, adipocytes or chondrocytes in vitro. In contrast, CD271+ MSCs transplanted into athymic rats significantly enhanced osteochondral wound healing with reduced vascularisation in the repair tissue compared to PA MSCs and control animals; there was little histological evidence of mature articular cartilage formation in all animals. Conditioned medium from CD271+ MSC cultures was less angiogenic than PA MSC conditioned medium, and had little effect on endothelial cell migration or endothelial tubule formation in vitro. The low angiogenic activity of CD271+ MSCs and improved early stage tissue repair of osteochondral lesions when transplanted, along with a comparable differentiation capacity along mesenchymal lineages when induced, suggests that these selected cells are a better candidate than PA MSCs for the repair of cartilaginous tissue.


Assuntos
Condrogênese , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Cicatrização , Animais , Cartilagem Articular/irrigação sanguínea , Diferenciação Celular , Células Cultivadas , Feminino , Humanos , Neovascularização Patológica , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Nus , Receptores de Fator de Crescimento Neural/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa