RESUMO
Schizophrenia, characterised by psychotic symptoms and in many cases social and occupational decline, remains an aetiological and therapeutic challenge. Contrary to popular belief, the disorder is modestly more common in men than in women. Nor is the outcome uniformly poor. A division of symptoms into positive, negative, and disorganisation syndromes is supported by factor analysis. Catatonic symptoms are not specific to schizophrenia and so-called first rank symptoms are no longer considered diagnostically important. Cognitive impairment is now recognised as a further clinical feature of the disorder. Lateral ventricular enlargement and brain volume reductions of around 2% are established findings. Brain functional changes occur in different subregions of the frontal cortex and might ultimately be understandable in terms of disturbed interaction among large-scale brain networks. Neurochemical disturbance, involving dopamine function and glutamatergic N-methyl-D-aspartate receptor function, is supported by indirect and direct evidence. The genetic contribution to schizophrenia is now recognised to be largely polygenic. Birth and early life factors also have an important aetiological role. The mainstay of treatment remains dopamine receptor-blocking drugs; a psychological intervention, cognitive behavioural therapy, has relatively small effects on symptoms. The idea that schizophrenia is better regarded as the extreme end of a continuum of psychotic symptoms is currently influential. Other areas of debate include cannabis and childhood adversity as causative factors, whether there is progressive brain change after onset, and the long-term success of early intervention initiatives.
Assuntos
Esquizofrenia , Psicologia do Esquizofrênico , Experiências Adversas da Infância/psicologia , Terapia Cognitivo-Comportamental , Antagonistas de Dopamina/uso terapêutico , Feminino , Humanos , Masculino , Fumar Maconha/efeitos adversos , Fatores de Risco , Esquizofrenia/diagnóstico , Esquizofrenia/epidemiologia , Esquizofrenia/etiologia , Esquizofrenia/terapia , Fatores SexuaisRESUMO
The molecular basis of how chromosome 16p13.11 microduplication leads to major psychiatric disorders is unknown. Here we have undertaken brain imaging of patients carrying microduplications in chromosome 16p13.11 and unaffected family controls, in parallel with iPS cell-derived cerebral organoid studies of the same patients. Patient MRI revealed reduced cortical volume, and corresponding iPSC studies showed neural precursor cell (NPC) proliferation abnormalities and reduced organoid size, with the NPCs therein displaying altered planes of cell division. Transcriptomic analyses of NPCs uncovered a deficit in the NFκB p65 pathway, confirmed by proteomics. Moreover, both pharmacological and genetic correction of this deficit rescued the proliferation abnormality. Thus, chromosome 16p13.11 microduplication disturbs the normal programme of NPC proliferation to reduce cortical thickness due to a correctable deficit in the NFκB signalling pathway. This is the first study demonstrating a biologically relevant, potentially ameliorable, signalling pathway underlying chromosome 16p13.11 microduplication syndrome in patient-derived neuronal precursor cells.
Assuntos
Cromossomos Humanos Par 16/genética , Transtornos Mentais/genética , NF-kappa B/metabolismo , Anormalidades Múltiplas/genética , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Proliferação de Células , Duplicação Cromossômica/genética , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Deficiência Intelectual/genética , Masculino , Pessoa de Meia-Idade , NF-kappa B/genética , Neuroimagem/métodos , Neurônios , Organoides/fisiologia , Transdução de Sinais , Células-Tronco/fisiologiaRESUMO
Although the underlying neurobiology of major mental illness (MMI) remains unknown, emerging evidence implicates a role for oligodendrocyte-myelin abnormalities. Here, we took advantage of a large family carrying a balanced t(1;11) translocation, which substantially increases risk of MMI, to undertake both diffusion tensor imaging and cellular studies to evaluate the consequences of the t(1;11) translocation on white matter structural integrity and oligodendrocyte-myelin biology. This translocation disrupts among others the DISC1 gene which plays a crucial role in brain development. We show that translocation-carrying patients display significant disruption of white matter integrity compared with familial controls. At a cellular level, we observe dysregulation of key pathways controlling oligodendrocyte development and morphogenesis in induced pluripotent stem cell (iPSC) derived case oligodendrocytes. This is associated with reduced proliferation and a stunted morphology in vitro. Further, myelin internodes in a humanized mouse model that recapitulates the human translocation as well as after transplantation of t(1;11) oligodendrocyte progenitors were significantly reduced when compared with controls. Thus we provide evidence that the t(1;11) translocation has biological effects at both the systems and cellular level that together suggest oligodendrocyte-myelin dysfunction.
Assuntos
Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Translocação Genética/genética , Adulto , Animais , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 11/genética , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Transtornos Mentais/genética , Camundongos , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Substância Branca/metabolismo , Substância Branca/fisiologiaRESUMO
Volatile sulfur compounds (VSCs) greatly influence the sensory properties and quality of wine and arise via both biological and chemical mechanisms. VSCs formed can also act as precursors for further downstream VSCs, thus elucidating the pathways leading to their formation is paramount. Short-term additions of exogenous hydrogen sulfide (H2S), ethanethiol (EtSH), S-ethylthio acetate (ETA), methanethiol (MeSH) and S-methylthio acetate (MTA) were made to exponentially growing fermentations of synthetic grape medium. The VSC profiles produced from live yeast cells were compared with those from dead cells and no cells. Interestingly, this experiment allowed the identification of specific biochemical and/or chemical pathways; e.g. most of the conversion of H2S to EtSH, and the further step from EtSH to ETA, required the presence of live yeast cells, as did the conversion of MeSH to MTA. In contrast, the reaction from MTA to MeSH and ETA to EtSH was due primarily to chemical degradation. Ultimately, this research unravelled some of the complex interactions and interconversions between VSCs, pinpointing the key biochemical and chemical nodes. These pathways are highly interconnected and showcase the complexity of both the sulfur pathways in yeast and the reactive chemistry of sulfur-containing compounds.
Assuntos
Fermentação , Odorantes/análise , Compostos de Enxofre/química , Vitis/metabolismo , Compostos Orgânicos Voláteis/química , Vinho/análise , Acetatos , Sulfeto de Hidrogênio , Saccharomyces cerevisiae/metabolismo , Compostos de SulfidrilaRESUMO
BACKGROUND: Dimethyl sulfide (DMS) is a small sulfur-containing impact odorant, imparting distinctive positive and / or negative characters to food and beverages. In white wine, the presence of DMS at perception threshold is considered to be a fault, contributing strong odors reminiscent of asparagus, cooked cabbage, and creamed corn. The source of DMS in wine has long been associated with S-methyl-l-methionine (SMM), a derivative of the amino acid methionine, which is thought to break down into DMS through chemical degradation, particularly during wine ageing. RESULTS: We developed and validated a new liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with a stable isotope dilution assay (SIDA) to measure SMM in grape juice and wine. The application of this new method for quantitating SMM, followed by the quantitation of DMS using headspace-solid phase micro-extraction coupled with gas chromatography-mass spectrometry (HS-SPME/GC-MS), confirmed that DMS can be produced in wine via the chemical breakdown of SMM to DMS, with greater degradation observed at 28 °C than at 14 °C. Further investigation into the role of grape juice and yeast strain on DMS formation revealed that the DMS produced from three different Sauvignon blanc grape juices, either from the SMM naturally present or SMM spiked at 50 mmol L-1 , was modulated depending on each of the four strains of Saccharomyces cerevisiae wine yeast used for fermentation. CONCLUSION: This study confirms the existence of a chemical pathway to the formation of DMS and reveals a yeast-mediated mechanism towards the formation of DMS from SMM during alcoholic fermentation. © 2019 Society of Chemical Industry.
Assuntos
Cromatografia Líquida/métodos , Sucos de Frutas e Vegetais/análise , Saccharomyces cerevisiae/metabolismo , Sulfetos/metabolismo , Espectrometria de Massas em Tandem/métodos , Vitamina U/análise , Vitis/química , Fermentação , Frutas/química , Frutas/metabolismo , Frutas/microbiologia , Sucos de Frutas e Vegetais/microbiologia , Odorantes/análise , Sulfetos/análise , Vitamina U/metabolismo , Vitis/metabolismo , Vitis/microbiologia , Vinho/análiseRESUMO
Identifying rare, highly penetrant risk mutations may be an important step in dissecting the molecular etiology of schizophrenia. We conducted a gene-based analysis of large (>100 kb), rare copy-number variants (CNVs) in the Wellcome Trust Case Control Consortium 2 (WTCCC2) schizophrenia sample of 1564 cases and 1748 controls all from Ireland, and further extended the analysis to include an additional 5196 UK controls. We found association with duplications at chr20p12.2 (P = 0.007) and evidence of replication in large independent European schizophrenia (P = 0.052) and UK bipolar disorder case-control cohorts (P = 0.047). A combined analysis of Irish/UK subjects including additional psychosis cases (schizophrenia and bipolar disorder) identified 22 carriers in 11 707 cases and 10 carriers in 21 204 controls [meta-analysis Cochran-Mantel-Haenszel P-value = 2 × 10(-4); odds ratio (OR) = 11.3, 95% CI = 3.7, ∞]. Nineteen of the 22 cases and 8 of the 10 controls carried duplications starting at 9.68 Mb with similar breakpoints across samples. By haplotype analysis and sequencing, we identified a tandem ~149 kb duplication overlapping the gene p21 Protein-Activated Kinase 7 (PAK7, also called PAK5) which was in linkage disequilibrium with local haplotypes (P = 2.5 × 10(-21)), indicative of a single ancestral duplication event. We confirmed the breakpoints in 8/8 carriers tested and found co-segregation of the duplication with illness in two additional family members of one of the affected probands. We demonstrate that PAK7 is developmentally co-expressed with another known psychosis risk gene (DISC1) suggesting a potential molecular mechanism involving aberrant synapse development and plasticity.
Assuntos
Transtorno Bipolar/genética , Duplicação Cromossômica , Proteínas do Tecido Nervoso/metabolismo , Transtornos Psicóticos/genética , Esquizofrenia/genética , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Transtorno Bipolar/patologia , Estudos de Casos e Controles , Pontos de Quebra do Cromossomo , Variações do Número de Cópias de DNA , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação , Masculino , Plasticidade Neuronal , Transtornos Psicóticos/patologia , Esquizofrenia/patologia , População Branca/genéticaRESUMO
The genetic basis of schizophrenia has been a hotly debated research topic for decades, yet recent studies, especially in the past year, have confirmed genetics as the major cause of this complex condition. Psychiatry has come of age: it is perhaps more difficult for the current generation of psychiatrists, to comprehend how the biological root of the condition could have been denied for so long. Here we review how highly collaborative global efforts to pool samples, utilise the very latest advances in genotyping and high throughput sequencing technologies, and application of robust statistical analysis have reaped phenomenal rewards. The major findings are that schizophrenia is a highly polygenic disorder with a complex array of risk loci, many include genes implicated also in intellectual disability, autism spectrum disorders, bipolar disorder and major depressive disorder. These candidate genes converge on key neuronal signalling pathways identifying novel targets for potential future therapeutic intervention.
Assuntos
Variação Genética/genética , Herança Multifatorial/genética , Esquizofrenia/genética , HumanosRESUMO
BACKGROUND: Copy number variants (CNVs) have been shown to play a role in schizophrenia and intellectual disability. METHODS: We compared the CNV burden in 66 patients with intellectual disability and no symptoms of psychosis (ID-only) with the burden in 64 patients with intellectual disability and schizophrenia (ID + SCZ). Samples were genotyped on three plates by the Broad Institute using the Affymetrix 6.0 array. RESULTS: For CNVs larger than 100 kb, there was no difference in the CNV burden of ID-only and ID + SCZ. In contrast, the number of duplications larger than 1 Mb was increased in ID + SCZ compared to ID-only. We detected seven large duplications and two large deletions at chromosome 15q11.2 (18.5-20.1 Mb) which were all present in patients with ID + SCZ. The involvement of this region in schizophrenia was confirmed in Scottish samples from the ISC study (N = 2,114; 1,130 cases and 984 controls). Finally, one of the patients with schizophrenia and low IQ carrying a duplication at 15q11.2, is a member of a previously described pedigree with multiple cases of mild intellectual disability, schizophrenia, hearing impairment, retinitis pigmentosa and cataracts. DNA samples were available for 11 members of this family and the duplication was present in all 10 affected individuals and was absent in an unaffected individual. CONCLUSIONS: Duplications at 15q11.2 (18.5-20.1 Mb) are highly prevalent in a severe group of patients characterized by intellectual disability and comorbid schizophrenia. It is also associated with a phenotype that includes schizophrenia, low IQ, hearing and visual impairments resembling the spectrum of symptoms described in "ciliopathies."
Assuntos
Variações do Número de Cópias de DNA/genética , Estudo de Associação Genômica Ampla , Inquéritos Epidemiológicos , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Esquizofrenia/complicações , Esquizofrenia/genética , Duplicação Cromossômica/genética , Segregação de Cromossomos/genética , Cromossomos Humanos Par 15/genética , Feminino , Rearranjo Gênico/genética , Humanos , Masculino , Linhagem , EscóciaRESUMO
Bipolar disorder and schizophrenia share a number of clinical features and genetic risk variants of small effect, suggesting overlapping pathogenic mechanisms. The effect of single genetic risk variants on brain function is likely to differ in people at high familial risk versus controls as these individuals have a higher overall genetic loading and are therefore closer to crossing a threshold of disease liability. Therefore, whilst the effects of genetic risk variants on brain function may be similar across individuals at risk of both disorders, they are hypothesized to differ compared to that seen in control subjects. We sought to examine the effects of the DISC1 Leu(607) Phe polymorphism on brain activation in young healthy individuals at familial risk of bipolar disorder (n = 84), in a group of controls (n = 78), and in a group at familial risk of schizophrenia (n = 47), performing a language task. We assessed whether genotype effects on brain activation differed according to risk status. There was a significant genotype × group interaction in a cluster centered on the left pre/postcentral gyrus, extending to the inferior frontal gyrus. The origin of this genotype × group effect originated from a significant effect of the presumed risk variant (Phe) on brain activation in the control group, which was absent in both high-risk groups. Differential effects of this polymorphism in controls compared to the two familial groups suggests a commonality of effect across individuals at high-risk of the disorders, which is likely to be dependant upon existing genetic background.
Assuntos
Transtorno Bipolar/genética , Mapeamento Encefálico , Encéfalo/fisiopatologia , Predisposição Genética para Doença , Mutação de Sentido Incorreto/genética , Proteínas do Tecido Nervoso/genética , Esquizofrenia/genética , Adulto , Comportamento , Transtorno Bipolar/fisiopatologia , Estudos de Casos e Controles , Análise por Conglomerados , Estudos de Coortes , Demografia , Feminino , Humanos , Masculino , Fatores de Risco , Esquizofrenia/fisiopatologia , Análise e Desempenho de Tarefas , Adulto JovemRESUMO
From a number of genome-wide association studies it was shown that de novo and/or rare copy number variants (CNVs) are found at an increased frequency in neuropsychiatric diseases. In this study we examined the prevalence of CNVs in six genomic regions (1q21.1, 2p16.3, 3q29, 15q11.2, 15q13.3, and 16p11.2) previously implicated in neuropsychiatric diseases. Hereto, a cohort of four neuropsychiatric disorders (schizophrenia, bipolar disorder, major depressive disorder, and intellectual disability) and control individuals from three different populations was used in combination with Multilpex Amplicon Quantifiaction (MAQ) assays, capable of high resolution (kb range) and custom-tailored CNV detection. Our results confirm the etiological candidacy of the six selected CNV regions for neuropsychiatric diseases. It is possible that CNVs in these regions can result in disturbed brain development and in this way lead to an increased susceptibility for different neuropsychiatric disorders, dependent on additional genetic and environmental factors. Our results also suggest that the neurodevelopmental component is larger in the etiology of schizophrenia and intellectual disability than in mood disorders. Finally, our data suggest that deletions are in general more pathogenic than duplications. Given the high frequency of the examined CNVs (1-2%) in patients of different neuropsychiatric disorders, screening of large cohorts with an affordable and feasible method like the MAQ assays used in this study is likely to result in important progress in unraveling the genetic factors leading to an increased susceptibility for several psychiatric disorders.
Assuntos
Variações do Número de Cópias de DNA , Transtorno Depressivo Maior/genética , Fenótipo , Adulto , Idoso , Transtorno Bipolar/genética , Estudos de Coortes , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Transtornos Mentais/genética , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Copy number variants (CNVs) are genetic rearrangements, such as deletions and duplications, which result in a deviation from the normal number of copies of a given gene segment. CNVs are implicated in many neuropsychiatric disorders. Deletions of the human chromosomal region 16p11.2 are one of the most common genetic linkages to autism spectrum disorders (ASD). However, ASD is not the only presenting feature, and many patients with 16p11.2 deletions present with a variable clinical spectrum. METHODS: To better understand the nature and presentation of the syndrome throughout development, we present three different, unrelated clinical cases of children with 16p11.2 deletion and provide a detailed description of their clinical manifestations. RESULTS: Cognitive and motor impairments were characteristic of all three patients with 16p11.2 deletion, despite the differences in the extent and clinical presentation of impairment. Two patients had a clinical diagnosis of ASD and one showed several ASD traits. In addition, two patients also had severe speech and language impairments, which is in line with previous reports on 16p11.2 phenotypes. Although epilepsy and obesity have been frequently associated with 16p11.2 deletion, only one patient had a diagnosis of epilepsy and none of the three cases were obese. CONCLUSION: This variation in clinical phenotype renders correct clinical interpretation and diagnosis challenging. Therefore, it is critical to elucidate the variable clinical phenotypes of rare CNVs, including 16p11.2 deletions, to help guide clinical monitoring and counselling of patients and families.
Assuntos
Transtorno Autístico/genética , Transtorno Autístico/fisiopatologia , Transtornos Cromossômicos/genética , Transtornos Cromossômicos/fisiopatologia , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Criança , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 16/genética , Variações do Número de Cópias de DNA/genética , Feminino , Humanos , Masculino , FenótipoRESUMO
Sauvignon blanc grapes were exposed to an ultra-violet (UV) light source post-hand harvest (whole bunches) or post-machine harvest. The thiol precursors S-3-(hexan-1-ol)-l-cysteine (Cys-3MH) and S-3-(hexan-1-ol)-l-glutathione (GSH-3MH) were quantified in the juices before and after UV treatment. Results showed that irradiation of the grapes with UV light had little to no effect on the thiol precursors. Wines were fermented from the corresponding juices and 18 aroma compounds were quantified. Differences were found between UV treatments of the wines for 3-mercaptohexanol, hexan-1-ol, ethyl butanoate, ethyl hexanoate, ethyl octanoate and phenylethyl alcohol. However, these changes were not significant (pâ¯<â¯0.05) for both grape media trialled. Future studies involving larger sample sizes and replicate numbers should be completed in order to ascertain any changes in aroma chemistry as a result of UV light application to grapes postharvest.
Assuntos
Irradiação de Alimentos/métodos , Compostos de Sulfidrila/efeitos da radiação , Raios Ultravioleta , Vitis/química , Vinho/análise , OdorantesRESUMO
BACKGROUND: Major depressive disorder is a clinically heterogeneous psychiatric disorder with a polygenic architecture. Genome-wide association studies have identified a number of risk-associated variants across the genome and have reported growing evidence of NETRIN1 pathway involvement. Stratifying disease risk by genetic variation within the NETRIN1 pathway may provide important routes for identification of disease mechanisms by focusing on a specific process, excluding heterogeneous risk-associated variation in other pathways. Here, we sought to investigate whether major depressive disorder polygenic risk scores derived from the NETRIN1 signaling pathway (NETRIN1-PRSs) and the whole genome, excluding NETRIN1 pathway genes (genomic-PRSs), were associated with white matter microstructure. METHODS: We used two diffusion tensor imaging measures, fractional anisotropy (FA) and mean diffusivity (MD), in the most up-to-date UK Biobank neuroimaging data release (FA: n = 6401; MD: n = 6390). RESULTS: We found significantly lower FA in the superior longitudinal fasciculus (ß = -.035, pcorrected = .029) and significantly higher MD in a global measure of thalamic radiations (ß = .029, pcorrected = .021), as well as higher MD in the superior (ß = .034, pcorrected = .039) and inferior (ß = .029, pcorrected = .043) longitudinal fasciculus and in the anterior (ß = .025, pcorrected = .046) and superior (ß = .027, pcorrected = .043) thalamic radiation associated with NETRIN1-PRS. Genomic-PRS was also associated with lower FA and higher MD in several tracts. CONCLUSIONS: Our findings indicate that variation in the NETRIN1 signaling pathway may confer risk for major depressive disorder through effects on a number of white matter tracts.
Assuntos
Encéfalo/patologia , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/patologia , Netrina-1/genética , Substância Branca/patologia , Idoso , Bancos de Espécimes Biológicos , Transtorno Depressivo Maior/metabolismo , Imagem de Tensor de Difusão , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Transdução de Sinais , Reino UnidoRESUMO
In this issue of Cell Stem Cell, Sarkar et al. (2018) describe an efficient method for the generation of human hippocampal pyramidal neurons from stem cells. They developed a compelling in vitro model that recapitulates synaptic connectivity within the hippocampus and showed that cells derived from patients with schizophrenia exhibit abnormal electrical activity.
Assuntos
Células-Tronco Pluripotentes , Esquizofrenia , Hipocampo , Humanos , Neurônios , Células PiramidaisRESUMO
Solid progress has occurred over the last decade in our understanding of the molecular genetic basis of neurodevelopmental disorders, and of schizophrenia and autism in particular. Although the genetic architecture of both disorders is far more complex than previously imagined, many key loci have at last been identified. This has allowed in vivo and in vitro technologies to be refined to model specific high-penetrant genetic loci involved in both disorders. Using the DISC1/NDE1 and CYFIP1/EIF4E loci as exemplars, we explore the opportunities and challenges of using animal models and human-induced pluripotent stem cell technologies to further understand/treat and potentially reverse the worst consequences of these debilitating disorders.This article is part of a discussion meeting issue 'Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists'.
Assuntos
Transtorno Autístico/genética , Modelos Animais de Doenças , Células-Tronco Pluripotentes Induzidas/fisiologia , Mutação , Esquizofrenia/genética , Animais , Animais Geneticamente Modificados , Humanos , CamundongosRESUMO
The inception of human-induced pluripotent stem cell (hiPSCs) technology has provided an exciting platform upon which the modelling and treatment of human neurodevelopmental and neuropsychiatric disorders may be expedited. Although the genetic architecture of these disorders is far more complex than previously imagined, many key loci have at last been identified. This has allowed in vivo and in vitro technologies to be refined to model specific high-penetrant genetic loci involved in both disorders. Animal models of neurodevelopmental disorders, such as schizophrenia and autism spectrum disorders, show limitations in recapitulating the full complexity and heterogeneity of human neurodevelopmental disease states. Indeed, patient-derived hiPSCs offer distinct advantages over classical animal models in the study of human neuropathologies. Here we have discussed the current, relative translational merit of hiPSCs in investigating human neurodevelopmental and neuropsychiatric disorders with a specific emphasis on the utility of such systems to aid in the identification of biomarkers. We have highlighted the promises and pitfalls of reprogramming cell fate for the study of these disorders and provide recommendations for future directions in this field in order to overcome current limitations. Ultimately, this will aid in the development of effective clinical strategies for diverse patient populations affected by these disorders with the aim of also leading to biomarker identification.
Assuntos
Células-Tronco Pluripotentes Induzidas , Neurobiologia , Transtornos do Neurodesenvolvimento , Esquizofrenia , Animais , Diferenciação Celular , Humanos , Transtornos do Neurodesenvolvimento/terapia , Esquizofrenia/terapiaRESUMO
The effects of two cluster thinning regimes (low and moderate) with Vitis vinifera cv. Pinot noir, in vineyards located in Central Otago, New Zealand, on wine composition, were studied across three consecutive seasons. There were strong correlations between the extent of cluster thinning and pH and bunch weights, and the concentrations of the C13-norisoprenoids, monoterpenes, fatty acids, cinnamic esters, ß-phenylethyl alcohol, and all polyphenols. The sensory terms herbaceous and acidic consistently received the highest ranking in the control wines without cluster thinning. The thinning treatments produced wines with higher marks in the descriptors fruity, spice, sweet, and body. Cluster thinning also had a measurable effect on timing of harvest, in addition to effects on chemical composition and wine sensory, which demonstrate benefits to wine quality that can be expected with cluster thinning of Pinot noir.
Assuntos
Fenóis/química , Vitis/química , Compostos Orgânicos Voláteis/química , Vinho/análise , Adulto , Feminino , Frutas/química , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Pessoa de Meia-Idade , PaladarRESUMO
Sesquiterpenes are a widespread class of compounds of increasing interest found in grapes and wines, amongst many other natural sources. Due to a lack of standards and the complexity of the mass spectra fragmentation, accurate quantification of these low concentration compounds had not previously been accomplished. The current paper presents a new method for the concurrent quantification of several sesquiterpenes. The multivariate method optimisation is presented. Synthesised isotopic standards were utilised in conjunction with solid phase microextraction (SPME) and gas chromatography-tandem mass spectrometry (GC-MS/MS) to perform a standard isotope dilution assay (SIDA). The method was successfully applied to several grape must samples of four different cultivar. To the best of our knowledge this was the first time some of these sesquiterpenes were quantified in grape.
Assuntos
Análise de Alimentos/métodos , Frutas/química , Sesquiterpenos/análise , Espectrometria de Massas em Tandem , Vitis/química , Cromatografia Gasosa-Espectrometria de Massas , Técnicas de Diluição do Indicador , Isótopos/análise , Microextração em Fase Sólida , Vinho/análiseRESUMO
The neuromodulatory gene DISC1 is disrupted by a t(1;11) translocation that is highly penetrant for schizophrenia and affective disorders, but how this translocation affects DISC1 function is incompletely understood. N-methyl-D-aspartate receptors (NMDAR) play a central role in synaptic plasticity and cognition, and are implicated in the pathophysiology of schizophrenia through genetic and functional studies. We show that the NMDAR subunit GluN2B complexes with DISC1-associated trafficking factor TRAK1, while DISC1 interacts with the GluN1 subunit and regulates dendritic NMDAR motility in cultured mouse neurons. Moreover, in the first mutant mouse that models DISC1 disruption by the translocation, the pool of NMDAR transport vesicles and surface/synaptic NMDAR expression are increased. Since NMDAR cell surface/synaptic expression is tightly regulated to ensure correct function, these changes in the mutant mouse are likely to affect NMDAR signalling and synaptic plasticity. Consistent with these observations, RNASeq analysis of the translocation carrier-derived human neurons indicates abnormalities of excitatory synapses and vesicle dynamics. RNASeq analysis of the human neurons also identifies many differentially expressed genes previously highlighted as putative schizophrenia and/or depression risk factors through large-scale genome-wide association and copy number variant studies, indicating that the translocation triggers common disease pathways that are shared with unrelated psychiatric patients. Altogether, our findings suggest that translocation-induced disease mechanisms are likely to be relevant to mental illness in general, and that such disease mechanisms include altered NMDAR dynamics and excitatory synapse function. This could contribute to the cognitive disorders displayed by translocation carriers.