Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Metab Eng ; 59: 24-35, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31926306

RESUMO

On the basis of our previous studies of microbial L-valine production under oxygen deprivation, we developed isobutanol-producing Corynebacterium glutamicum strains. The artificial isobutanol synthesis pathway was composed of the first three steps of the L-valine synthesis pathway; and the subsequent Ehrlich Pathway: pyruvate was converted to 2-ketoisovalerate in the former reactions; and the 2-keto acid was decarboxylated into isobutyraldehyde, and subsequently reduced into isobutanol in the latter reactions. Although there exists redox cofactor imbalance in the overall reactions, i.e., NADH is generated via glycolysis whereas NADPH is required to synthesize isobutanol, it was resolved by taking advantage of the NAD-preferring mutant acetohydroxy acid isomeroreductase encoded by ilvCTM and the NAD-specific alcohol dehydrogenase encoded by adhA. Each enzyme activity to synthesize isobutanol was finely tuned by using two kinds of lac promoter derivatives. Efficient suppression of succinate by-production and improvement of isobutanol yield resulted from inactivation of pckA, which encodes phosphoenolpyruvate carboxykinase, whereas glucose consumption and isobutanol production rates decreased because of the elevated intracellular NADH/NAD+ ratio. On the other hand, introduction of the exogenous Entner-Doudoroff pathway effectively enhanced glucose consumption and productivity. Overexpression of phosphoenolpyruvate:carbohydrate phosphotransferase system specific to glucose and deletion of ilvE, which encodes branched-chain amino acid transaminase, further suppressed by-products and improved isobutanol productivity. Finally, the produced isobutanol concentration reached 280 mM at a yield of 84% (mol/mol glucose) in 24 h.


Assuntos
Proteínas de Bactérias/genética , Butanóis/metabolismo , Corynebacterium glutamicum , Engenharia Metabólica , Fosfoenolpiruvato Carboxilase/genética , Ácido Succínico/metabolismo , Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo
2.
Appl Microbiol Biotechnol ; 103(8): 3381-3391, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30877357

RESUMO

Strain development is critical for microbial production of bio-based chemicals. The stereo-complex form of polylactic acid, a complex of poly-L- and poly-D-lactic acid, is a promising polymer candidate due to its high thermotolerance. Here, we developed Corynebacterium glutamicum strains producing high amounts of L- and D-lactic acid through intensive metabolic engineering. Chromosomal overexpression of genes encoding the glycolytic enzymes, glucokinase, glyceraldehyde-3-phosphate dehydrogenase, phosphofructokinase, triosephosphate isomerase, and enolase, increased L- and D-lactic acid concentration by 146% and 56%, respectively. Chromosomal integration of two genes involved in the Entner-Doudoroff pathway (6-phosphogluconate dehydratase and 2-dehydro-3-deoxyphosphogluconate aldolase), together with a gene encoding glucose-6-phosphate dehydrogenase from Zymomonas mobilis, to bypass the carbon flow from glucose, further increased L- and D-lactic acid concentration by 11% and 44%, respectively. Finally, additional chromosomal overexpression of a gene encoding NADH dehydrogenase to modulate the redox balance resulted in the production of 212 g/L L-lactic acid with a 97.9% yield and 264 g/L D-lactic acid with a 95.0% yield. The optical purity of both L- and D-lactic acid was 99.9%. Because the constructed metabolically engineered strains were devoid of plasmids and antibiotic resistance genes and were cultivated in mineral salts medium, these strains could contribute to the cost-effective production of the stereo-complex form of polylactic acid in practical scale.


Assuntos
Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Microbiologia Industrial/métodos , Ácido Láctico/biossíntese , Engenharia Metabólica/métodos , Anaerobiose , Cromossomos Bacterianos/genética , Expressão Gênica , Glucose/metabolismo , Glicólise/genética , Oxirredução , Poliésteres/metabolismo
4.
Appl Environ Microbiol ; 83(3)2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881414

RESUMO

In the analysis of a carbohydrate metabolite pathway, we found interesting phenotypes in a mutant strain of Corynebacterium glutamicum deficient in pfkB1, which encodes fructose-1-phosphate kinase. After being aerobically cultivated with fructose as a carbon source, this mutant consumed glucose and produced organic acid, predominantly l-lactate, at a level more than 2-fold higher than that of the wild-type grown with glucose under conditions of oxygen deprivation. This considerably higher fermentation capacity was unique for the combination of pfkB1 deletion and cultivation with fructose. In the metabolome and transcriptome analyses of this strain, marked intracellular accumulation of fructose-1-phosphate and significant upregulation of several genes related to the phosphoenolpyruvate:carbohydrate phosphotransferase system, glycolysis, and organic acid synthesis were identified. We then examined strains overexpressing several of the identified genes and demonstrated enhanced glucose consumption and organic acid production by these engineered strains, whose values were found to be comparable to those of the model pfkB1 deletion mutant grown with fructose. l-Lactate production by the ppc deletion mutant of the engineered strain was 2,390 mM (i.e., 215 g/liter) after 48 h under oxygen deprivation, which was a 2.7-fold increase over that of the wild-type strain with a deletion of ppc IMPORTANCE: Enhancement of glycolytic flux is important for improving microbiological production of chemicals, but overexpression of glycolytic enzymes has often resulted in little positive effect. That is presumably because the central carbon metabolism is under the complex and strict regulation not only transcriptionally but also posttranscriptionally, for example, by the ATP/ADP ratio. In contrast, we studied a mutant strain of Corynebacterium glutamicum that showed markedly enhanced glucose consumption and organic acid production and, based on the findings, identified several genes whose overexpression was effective in enhancing glycolytic flux under conditions of oxygen deprivation. These results will further understanding of the regulatory mechanisms of glycolytic flux and can be widely applied to the improvement of the microbial production of useful chemicals.


Assuntos
Ácidos/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Glucose/metabolismo , Compostos Orgânicos/metabolismo , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/metabolismo , Deleção de Sequência
5.
Appl Environ Microbiol ; 81(7): 2284-98, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25595768

RESUMO

Reinforcing microbial thermotolerance is a strategy to enable fermentation with flexible temperature settings and thereby to save cooling costs. Here, we report on adaptive laboratory evolution (ALE) of the amino acid-producing bacterium Corynebacterium glutamicum under thermal stress. After 65 days of serial passage of the transgenic strain GLY3, in which the glycolytic pathway is optimized for alanine production under oxygen deprivation, three strains adapted to supraoptimal temperatures were isolated, and all the mutations they acquired were identified by whole-genome resequencing. Of the 21 mutations common to the three strains, one large deletion and two missense mutations were found to promote growth of the parental strain under thermal stress. Additive effects on thermotolerance were observed among these mutations, and the combination of the deletion with the missense mutation on otsA, encoding a trehalose-6-phosphate synthase, allowed the parental strain to overcome the upper limit of growth temperature. Surprisingly, the three evolved strains acquired cross-tolerance for isobutanol, which turned out to be partly attributable to the genomic deletion associated with the enhanced thermotolerance. The deletion involved loss of two transgenes, pfk and pyk, encoding the glycolytic enzymes, in addition to six native genes, and elimination of the transgenes, but not the native genes, was shown to account for the positive effects on thermal and solvent stress tolerance, implying a link between energy-producing metabolism and bacterial stress tolerance. Overall, the present study provides evidence that ALE can be a powerful tool to refine the phenotype of C. glutamicum and to investigate the molecular bases of stress tolerance.


Assuntos
Adaptação Biológica , Corynebacterium glutamicum/efeitos dos fármacos , Corynebacterium glutamicum/efeitos da radiação , Temperatura Alta , Solventes/toxicidade , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/fisiologia , DNA Bacteriano/química , DNA Bacteriano/genética , Perfilação da Expressão Gênica , Genoma Bacteriano , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/fisiologia , Análise de Sequência de DNA , Deleção de Sequência , Inoculações Seriadas
6.
Appl Microbiol Biotechnol ; 99(3): 1427-33, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25363556

RESUMO

Corynebacterium glutamicum can consume glucose to excrete glycerol under oxygen deprivation. Although glycerol synthesis from 1,3-dihydroxyacetone (DHA) has been speculated, no direct evidence has yet been provided in C. glutamicum. Enzymatic and genetic investigations here indicate that the glycerol is largely produced from DHA and, unexpectedly, the reaction is catalyzed by (S,S)-butanediol dehydrogenase (ButA) that inherently catalyzes the interconversion between S-acetoin and (S,S)-2,3-butanediol. Consequently, the following pathway for glycerol biosynthesis in the bacterium emerges: dihydroxyacetone phosphate is dephosphorylated by HdpA to DHA, which is subsequently reduced to glycerol by ButA. This study emphasizes the importance of promiscuous activity of the enzyme in vivo.


Assuntos
Oxirredutases do Álcool/metabolismo , Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/enzimologia , Glicerol/metabolismo , Oxigênio/metabolismo , Oxirredutases do Álcool/genética , Proteínas de Bactérias/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Di-Hidroxiacetona/metabolismo
7.
Appl Microbiol Biotechnol ; 99(3): 1165-72, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25421564

RESUMO

Recombinant Corynebacterium glutamicum harboring genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase (adhB) can produce ethanol under oxygen deprivation. We investigated the effects of elevating the expression levels of glycolytic genes, as well as pdc and adhB, on ethanol production. Overexpression of four glycolytic genes (pgi, pfkA, gapA, and pyk) in C. glutamicum significantly increased the rate of ethanol production. Overexpression of tpi, encoding triosephosphate isomerase, further enhanced productivity. Elevated expression of pdc and adhB increased ethanol yield, but not the rate of production. Fed-batch fermentation using an optimized strain resulted in ethanol production of 119 g/L from 245 g/L glucose with a yield of 95% of the theoretical maximum. Further metabolic engineering, including integration of the genes for xylose and arabinose metabolism, enabled consumption of glucose, xylose, and arabinose, and ethanol production (83 g/L) at a yield of 90 %. This study demonstrated that C. glutamicum has significant potential for the production of cellulosic ethanol.


Assuntos
Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Etanol/metabolismo , Engenharia Metabólica , Técnicas de Cultura Celular por Lotes , Expressão Gênica , Genes Bacterianos , Redes e Vias Metabólicas/genética
8.
Appl Environ Microbiol ; 79(4): 1250-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23241971

RESUMO

We previously demonstrated efficient L-valine production by metabolically engineered Corynebacterium glutamicum under oxygen deprivation. To achieve the high productivity, a NADH/NADPH cofactor imbalance during the synthesis of l-valine was overcome by engineering NAD-preferring mutant acetohydroxy acid isomeroreductase (AHAIR) and using NAD-specific leucine dehydrogenase from Lysinibacillus sphaericus. Lactate as a by-product was largely eliminated by disrupting the lactate dehydrogenase gene ldhA. Nonetheless, a few other by-products, particularly succinate, were still produced and acted to suppress the L-valine yield. Eliminating these by-products therefore was deemed key to improving theL-valine yield. By additionally disrupting the phosphoenolpyruvate carboxylase gene ppc, succinate production was effectively suppressed, but both glucose consumption and L-valine production dropped considerably due to the severely elevated intracellular NADH/NAD(+) ratio. In contrast, this perturbed intracellular redox state was more than compensated for by deletion of three genes associated with NADH-producing acetate synthesis and overexpression of five glycolytic genes, including gapA, encoding NADH-inhibited glyceraldehyde-3-phosphate dehydrogenase. Inserting feedback-resistant mutant acetohydroxy acid synthase and NAD-preferring mutant AHAIR in the chromosome resulted in higher L-valine yield and productivity. Deleting the alanine transaminase gene avtA suppressed alanine production. The resultant strain produced 1,280 mM L-valine at a yield of 88% mol mol of glucose(-1) after 24 h under oxygen deprivation, a vastly improved yield over our previous best.


Assuntos
Vias Biossintéticas/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Engenharia Metabólica , Valina/biossíntese , Anaerobiose , Deleção de Genes , Expressão Gênica , Ácido Láctico/metabolismo , NAD/metabolismo , Oxigênio/metabolismo , Recombinação Genética , Ácido Succínico/metabolismo
9.
Appl Environ Microbiol ; 78(3): 865-75, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22138982

RESUMO

Production of L-valine under oxygen deprivation conditions by Corynebacterium glutamicum lacking the lactate dehydrogenase gene ldhA and overexpressing the L-valine biosynthesis genes ilvBNCDE was repressed. This was attributed to imbalanced cofactor production and consumption in the overall L-valine synthesis pathway: two moles of NADH was generated and two moles of NADPH was consumed per mole of L-valine produced from one mole of glucose. In order to solve this cofactor imbalance, the coenzyme requirement for L-valine synthesis was converted from NADPH to NADH via modification of acetohydroxy acid isomeroreductase encoded by ilvC and introduction of Lysinibacillus sphaericus leucine dehydrogenase in place of endogenous transaminase B, encoded by ilvE. The intracellular NADH/NAD(+) ratio significantly decreased, and glucose consumption and L-valine production drastically improved. Moreover, L-valine yield increased and succinate formation decreased concomitantly with the decreased intracellular redox state. These observations suggest that the intracellular NADH/NAD(+) ratio, i.e., reoxidation of NADH, is the primary rate-limiting factor for L-valine production under oxygen deprivation conditions. The L-valine productivity and yield were even better and by-products derived from pyruvate further decreased as a result of a feedback resistance-inducing mutation in the acetohydroxy acid synthase encoded by ilvBN. The resultant strain produced 1,470 mM L-valine after 24 h with a yield of 0.63 mol mol of glucose(-1), and the L-valine productivity reached 1,940 mM after 48 h.


Assuntos
Corynebacterium glutamicum/metabolismo , Engenharia Metabólica , Oxigênio/metabolismo , Valina/metabolismo , Anaerobiose , Bacillaceae/enzimologia , Bacillaceae/genética , Corynebacterium glutamicum/enzimologia , Corynebacterium glutamicum/genética , Metabolismo Energético , Glucose/metabolismo , NAD/metabolismo , NADP/metabolismo , Oxirredução , Ácido Succínico/metabolismo
10.
Appl Environ Microbiol ; 78(12): 4447-57, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22504802

RESUMO

We previously reported that Corynebacterium glutamicum strain ΔldhAΔppc+alaD+gapA, overexpressing glyceraldehyde-3-phosphate dehydrogenase-encoding gapA, shows significantly improved glucose consumption and alanine formation under oxygen deprivation conditions (T. Jojima, M. Fujii, E. Mori, M. Inui, and H. Yukawa, Appl. Microbiol. Biotechnol. 87:159-165, 2010). In this study, we employ stepwise overexpression and chromosomal integration of a total of four genes encoding glycolytic enzymes (herein referred to as glycolytic genes) to demonstrate further successive improvements in C. glutamicum glucose metabolism under oxygen deprivation. In addition to gapA, overexpressing pyruvate kinase-encoding pyk and phosphofructokinase-encoding pfk enabled strain GLY2/pCRD500 to realize respective 13% and 20% improved rates of glucose consumption and alanine formation compared to GLY1/pCRD500. Subsequent overexpression of glucose-6-phosphate isomerase-encoding gpi in strain GLY3/pCRD500 further improved its glucose metabolism. Notably, both alanine productivity and yield increased after each overexpression step. After 48 h of incubation, GLY3/pCRD500 produced 2,430 mM alanine at a yield of 91.8%. This was 6.4-fold higher productivity than that of the wild-type strain. Intracellular metabolite analysis showed that gapA overexpression led to a decreased concentration of metabolites upstream of glyceraldehyde-3-phosphate dehydrogenase, suggesting that the overexpression resolved a bottleneck in glycolysis. Changing ratios of the extracellular metabolites by overexpression of glycolytic genes resulted in reduction of the intracellular NADH/NAD(+) ratio, which also plays an important role on the improvement of glucose consumption. Enhanced alanine dehydrogenase activity using a high-copy-number plasmid further accelerated the overall alanine productivity. Increase in glycolytic enzyme activities is a promising approach to make drastic progress in growth-arrested bioprocesses.


Assuntos
Alanina/biossíntese , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Glucose/metabolismo , Glicólise , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Anaerobiose , Expressão Gênica , Genes Bacterianos , Oxigênio/metabolismo
11.
Biotechnol Biofuels ; 14(1): 45, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593398

RESUMO

BACKGROUND: It is interesting to modify sugar metabolic pathways to improve the productivity of biocatalysts that convert sugars to value-added products. However, this attempt often fails due to the tight control of the sugar metabolic pathways. Recently, activation of the Entner-Doudoroff (ED) pathway in Escherichia coli has been shown to enhance glucose consumption, though the mechanism underlying this phenomenon is poorly understood. In the present study, we investigated the effect of a functional ED pathway in metabolically engineered Corynebacterium glutamicum that metabolizes glucose via the Embden-Meyerhof-Parnas (EMP) pathway to produce ethanol under oxygen deprivation. This study aims to provide further information on metabolic engineering strategies that allow the Entner-Doudoroff and Embden-Meyerhof-Parnas pathways to coexist. RESULTS: Three genes (zwf, edd, and eda) encoding glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydratase, and 2-keto-3-deoxy-6-phosphogluconate aldolase from Zymomonas mobilis were expressed in a genetically modified strain, C. glutamicum CRZ2e, which produces pyruvate decarboxylase and alcohol dehydrogenase from Z. mobilis. A 13C-labeling experiment using [1-13C] glucose indicated a distinctive 13C distribution of ethanol between the parental and the ED-introduced strains, which suggested an alteration of carbon flux as a consequence of ED pathway introduction. The ED-introduced strain, CRZ2e-ED, consumed glucose 1.5-fold faster than the parental strain. A pfkA deletion mutant of CRZ2e-ED (CRZ2e-EDΔpfkA) was also constructed to evaluate the effects of EMP pathway inactivation, which showed an almost identical rate of glucose consumption compared to that of the parental CRZ2e strain. The introduction of the ED pathway did not alter the intracellular NADH/NAD+ ratio, whereas it resulted in a slight increase in the ATP/ADP ratio. The recombinant strains with simultaneous overexpression of the genes for the EMP and ED pathways exhibited the highest ethanol productivity among all C. glutamicum strains ever constructed. CONCLUSIONS: The increased sugar consumption observed in ED-introduced strains was not a consequence of cofactor balance alterations, but rather the crucial coexistence of two active glycolytic pathways for enhanced glucose consumption. Coexistence of the ED and EMP pathways is a good strategy for improving biocatalyst productivity even when NADPH supply is not a limiting factor for fermentation.

12.
Appl Microbiol Biotechnol ; 86(4): 1057-66, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20012280

RESUMO

Wild-type Corynebacterium glutamicum produced 0.6 g l(-1) xylitol from xylose at a productivity of 0.01 g l(-1) h(-1) under oxygen deprivation. To increase this productivity, the pentose transporter gene (araE) from C. glutamicum ATCC31831 was integrated into the C. glutamicum R chromosome. Consequent disruption of its lactate dehydrogenase gene (ldhA), and expression of single-site mutant xylose reductase from Candida tenuis (CtXR (K274R)) resulted in recombinant C. glutamicum strain CtXR4 that produced 26.5 g l(-1) xylitol at 3.1 g l(-1) h(-1). To eliminate possible formation of toxic intracellular xylitol phosphate, genes encoding xylulokinase (XylB) and phosphoenolpyruvate-dependent fructose phosphotransferase (PTS(fru)) were disrupted to yield strain CtXR7. The productivity of strain CtXR7 increased 1.6-fold over that of strain CtXR4. A fed-batch 21-h CtXR7 culture in mineral salts medium under oxygen deprivation yielded 166 g l(-1) xylitol at 7.9 g l(-1) h(-1), representing the highest bacterial xylitol productivity reported to date.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Xilitol/biossíntese , Aldeído Redutase/genética , Anaerobiose , Candida/enzimologia , Fermentação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Técnicas de Inativação de Genes , Engenharia Genética , Hidroliases/genética , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Oxigênio/metabolismo , Fosfotransferases/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recombinação Genética , Xilose/metabolismo
13.
Appl Microbiol Biotechnol ; 85(3): 471-80, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19838697

RESUMO

There is increasing interest in production of transportation fuels and commodity chemicals from lignocellulosic biomass, most desirably through biological fermentation. Considerable effort has been expended to develop efficient biocatalysts that convert sugars derived from lignocellulose directly to value-added products. Glucose, the building block of cellulose, is the most suitable fermentation substrate for industrial microorganisms such as Escherichia coli, Corynebacterium glutamicum, and Saccharomyces cerevisiae. Other sugars including xylose, arabinose, mannose, and galactose that comprise hemicellulose are generally less efficient substrates in terms of productivity and yield. Although metabolic engineering including introduction of functional pentose-metabolizing pathways into pentose-incompetent microorganisms has provided steady progress in pentose utilization, further improvements in sugar mixture utilization by microorganisms is necessary. Among a variety of issues on utilization of sugar mixtures by the microorganisms, recent studies have started to reveal the importance of sugar transporters in microbial fermentation performance. In this article, we review current knowledge on diversity and functions of sugar transporters, especially those associated with pentose uptake in microorganisms. Subsequently, we review and discuss recent studies on engineering of sugar transport as a driving force for efficient bioconversion of sugar mixtures derived from lignocellulose.


Assuntos
Metabolismo dos Carboidratos , Corynebacterium glutamicum/enzimologia , Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras/metabolismo , Saccharomyces cerevisiae/enzimologia , Biomassa , Biotransformação , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Engenharia Genética/métodos , Lignina/metabolismo , Proteínas de Membrana Transportadoras/genética , Redes e Vias Metabólicas/genética , Polissacarídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
14.
Appl Microbiol Biotechnol ; 87(1): 159-65, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20217078

RESUMO

Corynebacterium glutamicum was genetically engineered to produce L-alanine from sugar under oxygen deprivation. The genes associated with production of organic acids in C. glutamicum were inactivated and the alanine dehydrogenase gene (alaD) from Lysinibacillus sphaericus was overexpressed to direct carbon flux from organic acids to alanine. Although the alaD-expressing strain produced alanine from glucose under oxygen deprivation, its productivity was relatively low due to retarded glucose consumption. Homologous overexpression of the gapA gene encoding glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in the alaD-expressing strain stimulated glucose consumption and consequently improved alanine productivity. In contrast gapA overexpression did not affect glucose consumption under aerobic conditions, indicating that oxygen deprivation engendered inefficient regeneration of NAD+ resulting in impaired GAPDH activity and reduced glucose consumption in the alanine-producing strains. Inactivation of the alanine racemase gene allowed production of L-alanine with optical purity greater than 99.5%. The resulting strain produced 98 g l(-1) of L-alanine after 32 h in mineral salts medium. Our results show promise for amino acid production under oxygen deprivation.


Assuntos
Alanina/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Engenharia Genética , Glucose/metabolismo , Oxigênio/metabolismo , Alanina Desidrogenase/genética , Alanina Desidrogenase/metabolismo , Anaerobiose , Bacillales/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Gliceraldeído 3-Fosfato/genética , Gliceraldeído 3-Fosfato/metabolismo
15.
J Food Prot ; 83(7): 1234-1240, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32577758

RESUMO

ABSTRACT: Hygiene management of domestic refrigerators is an important aspect of food poisoning prevention. The aim of the present study was to confirm the relationship between microbial contamination and hygiene management by measuring microbial levels and investigating temperature and cleaning frequency and method of domestic refrigerators in Japan. We analyzed three internal sections (the egg compartment, bottom shelf, and vegetable drawer) of 100 domestic refrigerators in Japan. Salmonella, Listeria monocytogenes, and Yersinia enterocolitica were not found in any of the refrigerators, but coliforms and Escherichia coli were detected in more than one household, and Staphylococcus aureus was the most frequently isolated pathogen. The prevalences of these microorganisms had similar tendencies in all three sections sampled and were highest in the vegetable drawer. The temperature distribution in the refrigerators was also investigated, and a temperature >6.1°C (improper temperature) was found in 46.2% of the areas surveyed. Only 17% of the respondents cleaned their refrigerators monthly or more often, and this frequency was lower than that reported in other countries. Fifty percent of the respondents used only water to clean the refrigerator, 10% used only an alcohol or disinfecting wipe, and 8% used only a dry cloth. Although no significant correlations were found between microbial contamination and temperatures in refrigerators, correlations were found between microbial contamination and refrigerator cleaning frequency and/or method. To our knowledge, this is the first detailed survey concerning relationships between microbial contamination and hygiene management in domestic refrigerators in Japan. The data obtained can be used to promote food poisoning management in Japanese households.


Assuntos
Listeria monocytogenes , Refrigeração , Contagem de Colônia Microbiana , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Japão , Salmonella , Temperatura
16.
Appl Microbiol Biotechnol ; 85(1): 105-15, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19529932

RESUMO

Corynebacterium glutamicum strains CRA1 and CRX2 are able to grow on L-arabinose and D-xylose, respectively, as sole carbon sources. Nevertheless, they exhibit the major shortcoming that their sugar consumption appreciably declines at lower concentrations of these substrates. To address this, the C. glutamicum ATCC31831 L-arabinose transporter gene, araE, was independently integrated into both strains. Unlike its parental strain, resultant CRA1-araE was able to aerobically grow at low (3.6 g.l(-1)) L-arabinose concentrations. Interestingly, strain CRX2-araE grew 2.9-fold faster than parental CRX2 at low (3.6 g.l(-1)) D-xylose concentrations. The corresponding substrate consumption rates of CRA1-araE and CRX2-araE under oxygen-deprived conditions were 2.8- and 2.7-fold, respectively, higher than those of their respective parental strains. Moreover, CRA1-araE and CRX2-araE utilized their respective substrates simultaneously with D-glucose under both aerobic and oxygen-deprived conditions. Based on these observations, a platform strain, ACX-araE, for C. glutamicum-based mixed sugar utilization was designed. It harbored araBAD for L-arabinose metabolism, xylAB for D-xylose metabolism, D-cellobiose permease-encoding bglF317A, beta-glucosidase-encoding bglA and araE in its chromosomal DNA. In mineral medium containing a sugar mixture of D-glucose, D-xylose, L-arabinose, and D-cellobiose under oxygen-deprived conditions, strain ACX-araE simultaneously and completely consumed all sugars.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Engenharia Genética , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Pentoses/metabolismo , Aerobiose , Anaerobiose , Meios de Cultura/química , Hexoses/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
Environ Technol ; 40(23): 3094-3104, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29649965

RESUMO

When infectious diseases arise in domestic animals, a large amount of slaked lime is sprinkled on cattle sheds and their surroundings for disinfection and prevention. However, optimal sprinkling methods, standard and upper limit of slaked lime, and influence of slaked lime on non-target microorganisms remain unclear. In this study, we clarified detailed microbicidal effects of slaked lime via in vitro experiments and the influence of sprinkling powdered slaked lime (PSL) in field soil on microorganisms. In vitro disinfection tests assessing the appropriate amount of water and ventilation conditions were also performed in sterilized glass bottles with soil and Salmonella enterica subsp. enterica serovar Typhimurium. Under conditions with a small amount of water relative to the amount of PSL, the bactericidal effect and sustainability of powdered slaked lime (PSL) tended to be lower than those without spraying water. Moreover, the sterilization effect markedly decreased after 7 days under conditions with abundant water. These results indicate that the amount of sprayed water is very important for the bactericidal effect and persistence of PSL. A field experiment showed that the pH and exchange calcium (Ca) content of the soil sprinkled with over 1000 g m-2 PSL remained high even after a long period (≥1 year), with values of approximately 0.5-1.0 and approximately 3-11 times the level without PSL, respectively. However, sprinkling PSL did not influence viable microbial counts at any concentration.


Assuntos
Animais Domésticos , Compostos de Cálcio , Animais , Bovinos , Óxidos , Solo
18.
Fungal Genet Biol ; 45(6): 818-28, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18448367

RESUMO

We isolated a target gene for the Lentinula edodes putative transcription factor Le.CDC5 that contains a c-Myb-type DNA-binding domain. The gene, termed ctg1, encodes a novel protein (159 amino acid residues) with a leucine zipper-like sequence and contains a 7-bp Le.CDC5-binding sequence, 5'GCAATCT3', in its transcribed region downstream of the start codon. Chromatin immunoprecipitation analysis strongly suggested that intracellular Le.CDC5 binds to this 7-bp sequence on L. edodes chromatin. Binding was most efficient on chromatin from the stipes of mature fruiting bodies. Two Le.CDC5-interaction partners were identified in L. edodes and named CIPA and CIPB. The CIPB protein (127 amino acid residues) binds to a 6-bp sequence with the consensus sequence 5'CAACAC/T/G3'. The ctg1 gene contains nine 6-bp consensus (or consensus-like) sequences, six are in the 5'-upstream region and three in the transcribed region downstream of the start codon. At least two each of the upstream and downstream sequences appear to bind CIPB in vitro. We suggest that Le.CDC5 and CIPB can cooperatively regulate the expression of ctg1.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Cogumelos Shiitake/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , DNA Fúngico/análise , DNA Fúngico/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Carpóforos/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/classificação , Fungos/genética , Biblioteca Gênica , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Homologia de Sequência de Aminoácidos , Cogumelos Shiitake/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transcrição Gênica , Técnicas do Sistema de Duplo-Híbrido
19.
Appl Microbiol Biotechnol ; 81(4): 691-9, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18810427

RESUMO

Corynebacterium glutamicum R was metabolically engineered to broaden its sugar utilization range to D-xylose and D-cellobiose contained in lignocellulose hydrolysates. The resultant recombinants expressed Escherichia coli xylA and xylB genes, encoding D-xylose isomerase and xylulokinase, respectively, for D-xylose utilization and expressed C. glutamicum R bglF317A and bglA genes, encoding phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) beta-glucoside-specific enzyme IIBCA component and phospho-beta-glucosidase, respectively, for D-cellobiose utilization. The genes were fused to the non-essential genomic regions distributed around the C. glutamicum R chromosome and were under the control of their respective constitutive promoter trc and tac that permitted their expression even in the presence of D-glucose. The enzyme activities of resulting recombinants increased with the increase in the number of respective integrated genes. Maximal sugar utilization was realized with strain X5C1 harboring five xylA-xylB clusters and one bglF317A-bglA cluster. In both D-cellobiose and D-xylose utilization, the sugar consumption rates by genomic DNA-integrated strain were faster than those by plasmid-bearing strain, respectively. In mineral medium containing 40 g l(-1) D-glucose, 20 g l(-1) D-xylose, and 10 g l(-1) D-cellobiose, strain X5C1 simultaneously and completely consumed these sugars within 12 h and produced predominantly lactic and succinic acids under growth-arrested conditions.


Assuntos
Celobiose/metabolismo , Corynebacterium glutamicum/metabolismo , Engenharia Genética , Glucose/metabolismo , Oxigênio/metabolismo , Xilose/metabolismo , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Corynebacterium glutamicum/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
20.
Appl Microbiol Biotechnol ; 81(3): 459-64, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18777022

RESUMO

A Corynebacterium glutamicum strain (DeltaldhA-pCRA717) that overexpresses the pyc gene encoding pyruvate carboxylase while simultaneously exhibiting a disrupted ldhA gene encoding L-lactate dehydrogenase was investigated in detail for succinic acid production. Succinic acid was shown to be efficiently produced at high-cell density under oxygen deprivation with intermittent addition of sodium bicarbonate and glucose. Succinic acid concentration reached 1.24 M (146 g l(-1)) within 46 h. The yields of succinic acid and acetic acid from glucose were 1.40 mol mol(-1) (0.92 g g(-1)) and 0.29 mol mol(-1) (0.10 g g(-1)), respectively. The succinic acid production rate and yield depended on medium bicarbonate concentration rather than glucose concentration. Consumption of bicarbonate accompanied with succinic acid production implied that added bicarbonate was used for succinic acid synthesis.


Assuntos
Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Microbiologia Industrial , Engenharia de Proteínas , Ácido Succínico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/crescimento & desenvolvimento , Fermentação , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa