Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 37(2): 374-384, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38315500

RESUMO

Approximately 10% of smokers will develop lung cancer. Sensitive predictive biomarkers are needed to identify susceptible individuals. 1,3-Butadiene (BD) is among the most abundant tobacco smoke carcinogens. BD is metabolically activated to 3,4-epoxy-1-butene (EB), which is detoxified via the glutathione conjugation/mercapturic acid pathway to form monohydroxybutenyl mercapturic acid (MHBMA) and dihydroxybutyl mercapturic acid (DHBMA). Alternatively, EB can react with guanine nucleobases of DNA to form N7-(1-hydroxyl-3-buten-1-yl) guanine (EB-GII) adducts. We employed isotope dilution LC/ESI-HRMS/MS methodologies to quantify MHBMA, DHBMA, and EB-GII in urine of smokers who developed lung cancer (N = 260) and matched smoking controls (N = 259) from the Southern Community Cohort (white and African American). The concentrations of all three biomarkers were significantly higher in smokers that subsequently developed lung cancer as compared to matched smoker controls after adjusting for age, sex, and race/ethnicity (p < 0.0001 for EB-GII, p < 0.0001 for MHBMA, and p = 0.0007 for DHBMA). The odds ratio (OR) for lung cancer development was 1.63 for MHBMA, 1.37 for DHBMA, and 1.97 for EB-GII, with a higher OR in African American subjects than in whites. The association of urinary EB-GII, MHBMA, and DHBMA with lung cancer status did not remain upon adjustment for total nicotine equivalents. These findings reveal that urinary MHBMA, DHBMA, and EB-GII are directly correlated with the BD dose delivered via smoking and are associated with lung cancer risk.


Assuntos
Neoplasias Pulmonares , Produtos do Tabaco , Humanos , Fumantes , Butadienos/metabolismo , Acetilcisteína/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Guanina , Biomarcadores/urina , Adutos de DNA
2.
Chem Res Toxicol ; 36(8): 1409-1418, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37477250

RESUMO

Human exposure to known carcinogen 1,3-butadiene (BD) is common due to its high concentrations in automobile exhaust, cigarette smoke, and forest fires, as well as its widespread use in the polymer industry. The adverse health effects of BD are mediated by epoxide metabolites such as 3,4-epoxy-1-butene (EB), which reacts with DNA to form 1-hydroxyl-3-buten-1-yl adducts on DNA nucleobases. EB-derived mercapturic acids (1- and 2-(N-acetyl-l-cysteine-S-yl)-1-hydroxybut-3-ene (MHBMA) and N-acetyl-S-(3,4-dihydroxybutyl)-l-cysteine (DHBMA)) and urinary N7-(1-hydroxyl-3-buten-1-yl) guanine DNA adducts (EB-GII) have been used as biomarkers of BD exposure and cancer risk in smokers and occupationally exposed workers. However, low but significant levels of MHBMA, DHBMA, and EB-GII have been reported in unexposed cultured cells, animals, and humans, suggesting that these metabolites and adducts may form endogenously and complicate risk assessment of butadiene exposure. In the present work, stable isotope labeling in combination with high-resolution mass spectrometry was employed to accurately quantify endogenous and exogenous butadiene metabolites and DNA adducts in vivo. Laboratory rats were exposed to 0.3, 0.5, or 3 ppm of BD-d6 by inhalation, and the amounts of endogenous (d0) and exogenous (d6) DNA adducts and metabolites were quantified in tissues and urine by isotope dilution capillary liquid chromatography/high resolution electrospray ionization tandem mass spectrometry (capLC-ESI-HRMS/MS). Our results reveal that EB-GII adducts and MHBMA originate exclusively from exogenous exposure to BD, while substantial amounts of DHBMA are formed endogenously. Urinary EB-GII concentrations were associated with genomic EB-GII levels in tissues of the same animals. Our findings confirm that EB-GII and MHBMA are specific biomarkers of exposure to BD, while endogenous DHBMA predominates at sub-ppm exposures to BD.


Assuntos
Butadienos , Adutos de DNA , Ratos , Animais , Humanos , Butadienos/química , Marcação por Isótopo , Espectrometria de Massas/métodos , DNA , Acetilcisteína/urina , Biomarcadores/urina , Compostos de Epóxi/química
3.
Chemistry ; 28(3): e202103245, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34767297

RESUMO

Metabolic activation of the human carcinogen 1,3-butadiene (BD) by cytochrome 450 monooxygenases gives rise to a genotoxic diepoxide, 1,2,3,4-diepoxybutane (DEB). This reactive electrophile alkylates guanine bases in DNA to produce N7-(2-hydroxy-3,4-epoxy-1-yl)-dG (N7-DE-dG) adducts. Because of the positive charge at the N7 position of the purine heterocycle, N7-DEB-dG adducts are inherently unstable and can undergo spontaneous depurination or base-catalyzed imidazole ring opening to give N6 -[2-deoxy-D-erythro-pentofuranosyl]-2,6-diamino-3,4-dihydro-4-oxo-5-N-1-(oxiran-2-yl)propan-1-ol-formamidopyrimidine (DEB-FAPy-dG) adducts. Here we report the first synthesis and structural characterization of DEB-FAPy-dG adducts. Authentic standards of DEB-FAPy-dG and its 15 N3 -labeled analogue were used for the development of a quantitative nanoLC-ESI+ -HRMS/MS method, allowing for adduct detection in DEB-treated calf thymus DNA. DEB-FAPy-dG formation in DNA was dependent on DEB concentration and pH, with higher numbers observed under alkaline conditions.


Assuntos
DNA , Compostos de Epóxi , Butadienos , Cromatografia Líquida de Alta Pressão , Adutos de DNA , Formamidas , Furanos , Humanos , Pirimidinas
4.
Carcinogenesis ; 42(5): 694-704, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33693566

RESUMO

1,3-Butadiene (BD) is a known human carcinogen used in the synthetic polymer industry and also found in cigarette smoke, automobile exhaust and wood burning smoke. BD is metabolically activated by cytochrome P450 monooxygenases (CYP) 2E1 and 2A6 to 3,4-epoxy-1-butene (EB), which can be detoxified by GST-catalyzed glutathione conjugation or hydrolysis. We have previously observed ethnic differences in urinary levels of EB-mercapturic acids in white, Japanese American and Native Hawaiian smokers. In the present study, similar analyses were extended to urinary BD-DNA adducts. BD-induced N7-(1-hydroxy-3-buten-2-yl) guanine (EB-GII) adducts were quantified in urine samples obtained from smokers and non-smokers belonging to three racial/ethnic groups: white, Japanese American and Native Hawaiian. After adjusting for sex, age, nicotine equivalents, body mass index and batch, we found that Japanese American smokers excreted significantly higher amounts of urinary EB-GII than whites [1.45 (95% confidence interval: 1.12-1.87) versus 0.68 (95% confidence interval: 0.52-0.85) fmol/ml urine, P = 4 × 10-5]. Levels of urinary EB-GII in Native Hawaiian smokers were not different from those in whites [0.67 (95% confidence interval: 0.51-0.84) fmol/ml urine, P = 0.938]. There were no racial/ethnic differences in urinary EB-GII adduct levels in non-smokers. Racial/ethnic differences in urinary EB-GII adduct levels in smokers could not be explained by GSTT1 gene deletion or CYP2A6 enzymatic activity. Urinary EB-GII adduct levels in smokers were significantly associated with concentrations of BD metabolite dihyroxybutyl mercapturic acid. Overall, our results reveal that urinary EB-GII adducts in smokers differ across racial/ethnic groups. Future studies are required to understand genetic and epigenetic factors that may be responsible for these differences.


Assuntos
Butadienos/toxicidade , Citocromo P-450 CYP2A6/genética , Citocromo P-450 CYP2E1/genética , Adutos de DNA/efeitos dos fármacos , Acetilcisteína/urina , Adulto , Idoso , Asiático/genética , Carcinógenos/metabolismo , Carcinógenos/toxicidade , Adutos de DNA/genética , Adutos de DNA/urina , Compostos de Epóxi/efeitos adversos , Compostos de Epóxi/urina , Etnicidade/genética , Feminino , Glutationa Transferase/genética , Humanos , Masculino , Pessoa de Meia-Idade , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Fumaça/efeitos adversos , Fumantes , Espectrometria de Massas por Ionização por Electrospray , Produtos do Tabaco/efeitos adversos , Emissões de Veículos/toxicidade , População Branca/genética
5.
Mutagenesis ; 35(1): 19-26, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31702786

RESUMO

1,3-Butadiene (BD) is a known human carcinogen found in cigarette smoke, automobile exhaust, and urban air. Workers occupationally exposed to BD in the workplace have an increased incidence of leukemia and lymphoma. BD undergoes cytochrome P450-mediated metabolic activation to 3,4-epoxy-1-butene (EB), 1,2,3,4-diepoxybutane (DEB) and 1,2-dihydroxy-3,4-epoxybutane (EBD), which form covalent adducts with DNA. We have previously reported a quantitative nanoLC/ESI+-HRMS3 method for urinary N7-(1-hydroxy-3-buten-2-yl) guanine (EB-GII) adducts as a mechanism-based biomarker of BD exposure. In the present study, the method was updated to include high throughput 96-well solid phase extraction (SPE) and employed to establish urinary EB-GII biomarker stability and association with smoking. Urinary EB-GII levels were measured bimonthly for 1 year in 19 smokers to determine whether single adduct measurement provides reliable levels of EB-GII in an individual smoker. In addition, association of EB-GII with smoking was studied in 17 individuals participating in a smoking cessation program. EB-GII levels decreased 34% upon smoking cessation, indicating that it is associated with smoking status, but may also originate from sources other than exposure to cigarette smoke.


Assuntos
Adutos de DNA/urina , Fumar/urina , Adulto , Idoso , Biomarcadores Tumorais/urina , Butadienos/metabolismo , Carcinógenos/metabolismo , Cromatografia Líquida de Alta Pressão , Adutos de DNA/isolamento & purificação , Adutos de DNA/metabolismo , Feminino , Guanina/isolamento & purificação , Guanina/urina , Humanos , Masculino , Pessoa de Meia-Idade , Fumar/etnologia , Prevenção do Hábito de Fumar , Extração em Fase Sólida , Espectrometria de Massas por Ionização por Electrospray
6.
Toxics ; 9(10)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34678943

RESUMO

1,3-Butadiene (BD) is a common environmental and industrial chemical widely used in plastic and rubber manufacturing and also present in cigarette smoke and automobile exhaust. BD is classified as a known human carcinogen based on evidence of carcinogenicity in laboratory animals treated with BD by inhalation and epidemiological studies revealing an increased risk of leukemia and lymphohematopoietic cancers in workers occupationally exposed to BD. Upon exposure via inhalation, BD is bioactivated to several toxic epoxides including 3,4-epoxy-1-butene (EB), 3,4-epoxy-1,2-butanediol (EBD), and 1,2,3,4-diepoxybutane (DEB); these are conjugated with glutathione and excreted as 2-(N-acetyl-L-cystein-S-yl)-1-hydroxybut-3-ene/1-(N-acetyl-L-cystein-S-yl)-2-hydroxybut-3-ene (MHBMA), 4-(N-acetyl-L-cystein-S-yl)-1,2-dihydroxybutane (DHBMA), and 1,4-bis-(N-acetyl-L-cystein-S-yl)butane-2,3-diol (bis-BDMA). Exposure to DEB generates monoalkylated DNA adducts, DNA-DNA crosslinks, and DNA-protein crosslinks, which can cause base substitutions, genomic rearrangements, and large genomic deletions. In this study, we developed a quantitative nanoLC/NSI+-HRMS methodology for 1,4-bis-(gua-7-yl)-2,3-butanediol (bis-N7G-BD) adducts in urine (LOD: 0.1 fmol/mL urine, LOQ: 1.0 fmol/mL urine). This novel method was used to quantify bis-N7G-BD in urine of mice treated with 590 ± 150 ppm BD for 2 weeks (6 h/day, 5 days/week). Bis-N7G-BD was detected in urine of male and female BD-exposed mice (574.6 ± 206.0 and 571.1 ± 163.4 pg/mg of creatinine, respectively). In addition, major urinary metabolites of BD, bis-BDMA, MHBMA and DHBMA, were measured in the same samples. Urinary bis-N7G-BD adduct levels correlated with DEB-derived metabolite bis-BDMA (r = 0.80, Pearson correlation), but not with the EB-derived DNA adducts (EB-GII) or EB-derived metabolites MHBMA and DHBMA (r = 0.24, r = 0.14, r = 0.18, respectively, Pearson correlations). Urinary bis-N7G-BD could be employed as a novel non-invasive biomarker of exposure to BD and bioactivation to its most mutagenic metabolite, DEB. This method will be useful for future studies of 1,3-butadiene exposure and metabolism.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa