Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 196(3): 978-87, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26729805

RESUMO

This study supports a new concept where the opposing functions of the tetraspanins CD37 and CD82 may coordinate changes in migration and Ag presentation during dendritic cell (DC) activation. We have previously published that CD37 is downregulated upon monocyte-derived DC activation, promotes migration of both skin and bone marrow-derived dendritic cells (BMDCs), and restrains Ag presentation in splenic and BMDCs. In this article, we show that CD82, the closest phylogenetic relative to CD37, appears to have opposing functions. CD82 is upregulated upon activation of BMDCs and monocyte-derived DCs, restrains migration of skin and BMDCs, supports MHC class II maturation, and promotes stable interactions between T cells and splenic DCs or BMDCs. The underlying mechanism involves the rearrangement of the cytoskeleton via a differential activation of small GTPases. Both CD37(-/-) and CD82(-/-) BMDCs lack cellular projections, but where CD37(-/-) BMDCs spread poorly on fibronectin, CD82(-/-) BMDCs are large and spread to a greater extent than wild-type BMDCs. At the molecular level, CD82 is a negative regulator of RhoA, whereas CD37 promotes activation of Rac-1; both tetraspanins negatively regulate Cdc42. Thus, this study identifies a key aspect of DC biology: an unactivated BMDC is CD37(hi)CD82(lo), resulting in a highly motile cell with a limited ability to activate naive T cells. By contrast, a late activated BMDC is CD37(lo)CD82(hi), and thus has modified its migratory, cytoskeletal, and Ag presentation machinery to become a cell superbly adapted to activating naive T cells.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos CD/imunologia , Antígenos de Neoplasias/imunologia , Movimento Celular , Células Dendríticas/imunologia , Proteína Kangai-1/imunologia , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Tetraspaninas/imunologia , Animais , Separação Celular , Técnicas de Cocultura , Células Dendríticas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase
2.
J Immunol ; 195(12): 5770-9, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26566675

RESUMO

Deciphering the molecular basis of leukocyte recruitment is critical to the understanding of inflammation. In this study, we investigated the contribution of the tetraspanin CD37 to this key process. CD37-deficient mice showed impaired neutrophil recruitment in a peritonitis model. Intravital microscopic analysis indicated that the absence of CD37 impaired the capacity of leukocytes to follow a CXCL1 chemotactic gradient accurately in the interstitium. Moreover, analysis of CXCL1-induced leukocyte-endothelial cell interactions in postcapillary venules revealed that CXCL1-induced neutrophil adhesion and transmigration were reduced in the absence of CD37, consistent with a reduced capacity to undergo ß2 integrin-dependent adhesion. This result was supported by in vitro flow chamber experiments that demonstrated an impairment in adhesion of CD37-deficient neutrophils to the ß2 integrin ligand, ICAM-1, despite the normal display of high-affinity ß2 integrins. Superresolution microscopic assessment of localization of CD37 and CD18 in ICAM-1-adherent neutrophils demonstrated that these molecules do not significantly cocluster in the cell membrane, arguing against the possibility that CD37 regulates ß2 integrin function via a direct molecular interaction. Moreover, CD37 ablation did not affect ß2 integrin clustering. In contrast, the absence of CD37 in neutrophils impaired actin polymerization, cell spreading and polarization, dysregulated Rac-1 activation, and accelerated ß2 integrin internalization. Together, these data indicate that CD37 promotes neutrophil adhesion and recruitment via the promotion of cytoskeletal function downstream of integrin-mediated adhesion.


Assuntos
Actinas/metabolismo , Antígenos CD/metabolismo , Antígenos de Neoplasias/metabolismo , Citoesqueleto/imunologia , Neutrófilos/fisiologia , Tetraspaninas/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Antígenos CD/genética , Antígenos de Neoplasias/genética , Antígenos CD18/metabolismo , Adesão Celular , Movimento Celular/genética , Células Cultivadas , Quimiocina CXCL1/metabolismo , Quimiotaxia/genética , Molécula 1 de Adesão Intercelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , Tetraspaninas/genética , Proteínas rac1 de Ligação ao GTP/genética
3.
Eur J Immunol ; 43(5): 1208-19, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23420539

RESUMO

Previous studies on the role of the tetraspanin CD37 in cellular immunity appear contradictory. In vitro approaches indicate a negative regulatory role, whereas in vivo studies suggest that CD37 is necessary for optimal cellular responses. To resolve this discrepancy, we studied the adaptive cellular immune responses of CD37(-/-) mice to intradermal challenge with either tumors or model antigens and found that CD37 is essential for optimal cell-mediated immunity. We provide evidence that an increased susceptibility to tumors observed in CD37(-/-) mice coincides with a striking failure to induce antigen-specific IFN-γ-secreting T cells. We also show that CD37 ablation impairs several aspects of DC function including: in vivo migration from skin to draining lymph nodes; chemo-tactic migration; integrin-mediated adhesion under flow; the ability to spread and form actin protrusions and in vivo priming of adoptively transferred naïve T cells. In addition, multiphoton microscopy-based assessment of dermal DC migration demonstrated a reduced rate of migration and increased randomness of DC migration in CD37(-/-) mice. Together, these studies are consistent with a model in which the cellular defect that underlies poor cellular immune induction in CD37(-/-) mice is impaired DC migration.


Assuntos
Antígenos CD/imunologia , Antígenos de Neoplasias/imunologia , Movimento Celular/imunologia , Células Dendríticas/imunologia , Imunidade Celular , Tetraspaninas/imunologia , Imunidade Adaptativa , Transferência Adotiva , Animais , Antígenos CD/genética , Antígenos de Neoplasias/genética , Adesão Celular/imunologia , Proliferação de Células , Células Dendríticas/patologia , Feminino , Expressão Gênica , Interferon gama/biossíntese , Interferon gama/imunologia , Linfonodos/imunologia , Linfonodos/patologia , Linfoma de Células T/genética , Linfoma de Células T/imunologia , Linfoma de Células T/patologia , Camundongos , Camundongos Knockout , Microscopia Confocal , Transplante de Neoplasias , Pele/imunologia , Pele/patologia , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/transplante , Tetraspaninas/deficiência , Tetraspaninas/genética
4.
iScience ; 23(5): 101104, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32428859

RESUMO

Tetraspanins regulate key processes in immune cells; however, the function of the leukocyte-restricted tetraspanin CD53 is unknown. Here we show that CD53 is essential for lymphocyte recirculation. Lymph nodes of Cd53-/- mice were smaller than those of wild-type mice due to a marked reduction in B cells and a 50% decrease in T cells. This reduced cellularity reflected an inability of Cd53-/- B and T cells to efficiently home to lymph nodes, due to the near absence of L-selectin from Cd53-/- B cells and reduced stability of L-selectin on Cd53-/- T cells. Further analyses, including on human lymphocytes, showed that CD53 stabilizes L-selectin surface expression and may restrain L-selectin shedding via both ADAM17-dependent and ADAM17-independent mechanisms. The disruption in lymphocyte recirculation in Cd53-/- mice led to impaired immune responses dependent on antigen delivery to lymph nodes. Together these findings demonstrate an essential role for CD53 in lymphocyte trafficking and immunity.

5.
Parasit Vectors ; 11(1): 617, 2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30509301

RESUMO

BACKGROUND: Diseases caused by parasitic flatworms of rumen tissues (paramphistomosis) are a significant threat to global food security as a cause of morbidity and mortality in ruminant livestock in subtropical and tropical climates. Calicophoron daubneyi is currently the only paramphistome species commonly infecting ruminant livestock in temperate European climates. However, recorded incidences of C. daubneyi infection in European livestock have been increasing over the last decade. Whilst clinical paramphistomosis caused by adult worms has not been confirmed in Europe, fatalities have been attributed to severe haemorrhagic enteritis of the small intestine resulting from the migration of immature paramphistomes. Large numbers of mature adults can reside in the rumen, yet to date, the impact on rumen fermentation, and consequently on productivity and economic management of infected livestock, have not been resolved. Limited publicly available nucleotide and protein sequences for C. daubneyi underpin this lack of biological and economic understanding. Here we present for the first time a de novo assembled transcriptome, with functional annotations, for adult C. daubneyi, which provides a reference database for protein and nucleotide sequence identification to facilitate fundamental biology, anthelmintic, vaccine and diagnostics discoveries. RESULTS: This dataset identifies a number of genes potentially unique to C. daubneyi and, by comparison to an existing transcriptome for the related Paramphistomum cervi, identifies novel genes which may be unique to the paramphistome group of platyhelminthes. Additionally, we present the first coverage of the excretory/secretory and soluble somatic proteome profiles for adult C. daubneyi and identify the release of extracellular vesicles from adult C. daubneyi parasites during in vitro, ex-host culture. Finally, we have performed the first analysis of rumen fluke impacting upon rumen fermentation parameters using an in vitro gas production study resulting in a significant increase in propionate production. CONCLUSIONS: The resulting data provide a discovery platform (transcriptome, proteomes, EV isolation pipeline and in vitro fermentation system) to further study C. daubneyi-host interaction. In addition, the acetate: propionate ratio has been demonstrated to decrease with rumen fluke infection suggesting that acidotic conditions in the rumen may occur.


Assuntos
Doenças dos Bovinos/parasitologia , Gado/parasitologia , Paramphistomatidae/genética , Paramphistomatidae/metabolismo , Rúmen/parasitologia , Infecções por Trematódeos/veterinária , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/metabolismo , Europa (Continente)/epidemiologia , Vesículas Extracelulares , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/metabolismo , Genes de Helmintos , Proteínas de Helminto , Incidência , Redes e Vias Metabólicas/genética , Proteômica , Rúmen/metabolismo , Transcriptoma , Infecções por Trematódeos/epidemiologia , Infecções por Trematódeos/parasitologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa