Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 17(7): e1009640, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34214075

RESUMO

Heterotrimeric G proteins were originally discovered through efforts to understand the effects of hormones, such as glucagon and epinephrine, on glucose metabolism. On the other hand, many cellular metabolites, including glucose, serve as ligands for G protein-coupled receptors. Here we investigate the consequences of glucose-mediated receptor signaling, and in particular the role of a Gα subunit Gpa2 and a non-canonical Gß subunit, known as Asc1 in yeast and RACK1 in animals. Asc1/RACK1 is of particular interest because it has multiple, seemingly unrelated, functions in the cell. The existence of such "moonlighting" operations has complicated the determination of phenotype from genotype. Through a comparative analysis of individual gene deletion mutants, and by integrating transcriptomics and metabolomics measurements, we have determined the relative contributions of the Gα and Gß protein subunits to glucose-initiated processes in yeast. We determined that Gpa2 is primarily involved in regulating carbohydrate metabolism while Asc1 is primarily involved in amino acid metabolism. Both proteins are involved in regulating purine metabolism. Of the two subunits, Gpa2 regulates a greater number of gene transcripts and was particularly important in determining the amplitude of response to glucose addition. We conclude that the two G protein subunits regulate distinct but complementary processes downstream of the glucose-sensing receptor, as well as processes that lead ultimately to changes in cell growth and metabolism.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Glucose/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Metabolismo dos Carboidratos , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/genética , Perfilação da Expressão Gênica , Metabolômica , Mutação , Purinas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais
2.
Proc Natl Acad Sci U S A ; 109(19): 7275-9, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22529365

RESUMO

Proteins with similar crystal structures can have dissimilar rates of substrate binding and catalysis. Here we used molecular dynamics simulations and biochemical analysis to determine the role of intradomain and interdomain motions in conferring distinct activation rates to two Gα proteins, Gα(i1) and GPA1. Despite high structural similarity, GPA1 can activate itself without a receptor, whereas Gα(i1) cannot. We found that motions in these proteins vary greatly in type and frequency. Whereas motion is greatest in the Ras domain of Gα(i1), it is greatest in helices αA and αB from the helical domain of GPA1. Using protein chimeras, we show that helix αA from GPA1 is sufficient to confer rapid activation to Gα(i1). Gα(i1) has less intradomain motion than GPA1 and instead displays interdomain displacement resembling that observed in a receptor-heterotrimer crystal complex. Thus, structurally similar proteins can have distinct atomic motions that confer distinct activation mechanisms.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/química , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica
3.
PLoS Genet ; 8(6): e1002756, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22761582

RESUMO

Animal heterotrimeric G proteins are activated by guanine nucleotide exchange factors (GEF), typically seven transmembrane receptors that trigger GDP release and subsequent GTP binding. In contrast, the Arabidopsis thaliana G protein (AtGPA1) rapidly activates itself without a GEF and is instead regulated by a seven transmembrane Regulator of G protein Signaling (7TM-RGS) protein that promotes GTP hydrolysis to reset the inactive (GDP-bound) state. It is not known if this unusual activation is a major and constraining part of the evolutionary history of G signaling in eukaryotes. In particular, it is not known if this is an ancestral form or if this mechanism is maintained, and therefore constrained, within the plant kingdom. To determine if this mode of signal regulation is conserved throughout the plant kingdom, we analyzed available plant genomes for G protein signaling components, and we purified individually the plant components encoded in an informative set of plant genomes in order to determine their activation properties in vitro. While the subunits of the heterotrimeric G protein complex are encoded in vascular plant genomes, the 7TM-RGS genes were lost in all investigated grasses. Despite the absence of a Gα-inactivating protein in grasses, all vascular plant Gα proteins examined rapidly released GDP without a receptor and slowly hydrolyzed GTP, indicating that these Gα are self-activating. We showed further that a single amino acid substitution found naturally in grass Gα proteins reduced the Gα-RGS interaction, and this amino acid substitution occurred before the loss of the RGS gene in the grass lineage. Like grasses, non-vascular plants also appear to lack RGS proteins. However, unlike grasses, one representative non-vascular plant Gα showed rapid GTP hydrolysis, likely compensating for the loss of the RGS gene. Our findings, the loss of a regulatory gene and the retention of the "self-activating" trait, indicate the existence of divergent Gα regulatory mechanisms in the plant kingdom. In the grasses, purifying selection on the regulatory gene was lost after the physical decoupling of the RGS protein and its cognate Gα partner. More broadly these findings show extreme divergence in Gα activation and regulation that played a critical role in the evolution of G protein signaling pathways.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/genética , Plantas/genética , Proteínas de Arabidopsis/metabolismo , Eucariotos/genética , Evolução Molecular , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Genoma de Planta , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólise , Filogenia , Plantas/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo , Transdução de Sinais
4.
J Biol Chem ; 286(15): 13143-50, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21325279

RESUMO

It has long been known that animal heterotrimeric Gαßγ proteins are activated by cell-surface receptors that promote GTP binding to the Gα subunit and dissociation of the heterotrimer. In contrast, the Gα protein from Arabidopsis thaliana (AtGPA1) can activate itself without a receptor or other exchange factor. It is unknown how AtGPA1 is regulated by Gßγ and the RGS (regulator of G protein signaling) protein AtRGS1, which is comprised of an RGS domain fused to a receptor-like domain. To better understand the cycle of G protein activation and inactivation in plants, we purified and reconstituted AtGPA1, full-length AtRGS1, and two putative Gßγ dimers. We show that the Arabidopsis Gα protein binds to its cognate Gßγ dimer directly and in a nucleotide-dependent manner. Although animal Gßγ dimers inhibit GTP binding to the Gα subunit, AtGPA1 retains fast activation in the presence of its cognate Gßγ dimer. We show further that the full-length AtRGS1 protein accelerates GTP hydrolysis and thereby counteracts the fast nucleotide exchange rate of AtGPA1. Finally, we show that AtGPA1 is less stable in complex with GDP than in complex with GTP or the Gßγ dimer. Molecular dynamics simulations and biophysical studies reveal that altered stability is likely due to increased dynamic motion in the N-terminal α-helix and Switch II of AtGPA1. Thus, despite profound differences in the mechanisms of activation, the Arabidopsis G protein is readily inactivated by its cognate RGS protein and forms a stable, GDP-bound, heterotrimeric complex similar to that found in animals.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas RGS/metabolismo , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ativação Enzimática/fisiologia , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Guanosina Trifosfato/genética , Hidrólise , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteínas RGS/genética
5.
Sci Signal ; 5(226): re2, 2012 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-22649098

RESUMO

Heterotrimeric guanine nucleotide-binding proteins (G proteins) are positioned at the top of many signal transduction pathways. The G protein α subunit is composed of two domains, one that resembles Ras and another that is composed entirely of α helices. Historically most attention has focused on the Ras-like domain, but emerging evidence reveals that the helical domain is an active participant in G protein signaling.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/química , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Transdução de Sinais/fisiologia , Animais , Ativação Enzimática/fisiologia , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Humanos , Proteína Oncogênica p21(ras)/química , Proteína Oncogênica p21(ras)/genética , Proteína Oncogênica p21(ras)/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
6.
Nat Cell Biol ; 14(10): 1079-88, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22940907

RESUMO

Signal transduction typically begins by ligand-dependent activation of a concomitant partner that is otherwise in its resting state. However, in cases where signal activation is constitutive by default, the mechanism of regulation is unknown. The Arabidopsis thaliana heterotrimeric Gα protein self-activates without accessory proteins, and is kept in its resting state by the negative regulator, AtRGS1 (regulator of G-protein signalling 1), which is the prototype of a seven-transmembrane receptor fused with an RGS domain. Endocytosis of AtRGS1 by ligand-dependent endocytosis physically uncouples the GTPase-accelerating activity of AtRGS1 from the Gα protein, permitting sustained activation. Phosphorylation of AtRGS1 by AtWNK8 kinase causes AtRGS1 endocytosis, required for both G-protein-mediated sugar signalling and cell proliferation. In animals, receptor endocytosis results in signal desensitization, whereas in plants, endocytosis results in signal activation. These findings reveal how different organisms rearrange a regulatory system to result in opposite outcomes using similar phosphorylation-dependent endocytosis mechanisms.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Endocitose/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Proteínas RGS/metabolismo , Transdução de Sinais/fisiologia , Proliferação de Células , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo
7.
Sci Signal ; 4(159): ra8, 2011 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-21304159

RESUMO

In animals, heterotrimeric guanine nucleotide-binding protein (G protein) signaling is initiated by G protein-coupled receptors (GPCRs), which activate G protein α subunits; however, the plant Arabidopsis thaliana lacks canonical GPCRs, and its G protein α subunit (AtGPA1) is self-activating. To investigate how AtGPA1 becomes activated, we determined its crystal structure. AtGPA1 is structurally similar to animal G protein α subunits, but our crystallographic and biophysical studies revealed that it had distinct properties. Notably, the helical domain of AtGPA1 displayed pronounced intrinsic disorder and a tendency to disengage from the Ras domain of the protein. Domain substitution experiments showed that the helical domain of AtGPA1 was necessary for self-activation and sufficient to confer self-activation to an animal G protein α subunit. These findings reveal the structural basis for a mechanism for G protein activation in Arabidopsis that is distinct from the well-established mechanism found in animals.


Assuntos
Proteínas de Arabidopsis/química , Subunidades alfa de Proteínas de Ligação ao GTP/química , Estrutura Secundária de Proteína , Transdução de Sinais , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dicroísmo Circular , Cristalização , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Homologia de Sequência de Aminoácidos , Difração de Raios X
8.
Biochemistry ; 43(50): 15702-19, 2004 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-15595826

RESUMO

CTD kinase I (CTDK-I) of Saccharomyces cerevisiae is required for normal phosphorylation of the C-terminal repeat domain (CTD) on elongating RNA polymerase II. To elucidate cellular roles played by this kinase and the hyperphosphorylated CTD (phosphoCTD) it generates, we systematically searched yeast extracts for proteins that bound to the phosphoCTD made by CTDK-I in vitro. Initially, using a combination of far-western blotting and phosphoCTD affinity chromatography, we discovered a set of novel phosphoCTD-associating proteins (PCAPs) implicated in a variety of nuclear functions. We identified the phosphoCTD-interacting domains of a number of these PCAPs, and in several test cases (namely, Set2, Ssd1, and Hrr25) adduced evidence that phosphoCTD binding is functionally important in vivo. Employing surface plasmon resonance (BIACORE) analysis, we found that recombinant versions of these and other PCAPs bind preferentially to CTD repeat peptides carrying SerPO(4) residues at positions 2 and 5 of each seven amino acid repeat, consistent with the positional specificity of CTDK-I in vitro [Jones, J. C., et al. (2004) J. Biol. Chem. 279, 24957-24964]. Subsequently, we used a synthetic CTD peptide with three doubly phosphorylated repeats (2,5P) as an affinity matrix, greatly expanding our search for PCAPs. This resulted in identification of approximately 100 PCAPs and associated proteins representing a wide range of functions (e.g., transcription, RNA processing, chromatin structure, DNA metabolism, protein synthesis and turnover, RNA degradation, snRNA modification, and snoRNP biogenesis). The varied nature of these PCAPs and associated proteins points to an unexpectedly diverse set of connections between Pol II elongation and other processes, conceptually expanding the role played by CTD phosphorylation in functional organization of the nucleus.


Assuntos
Proteínas Quinases/fisiologia , Proteoma/metabolismo , RNA Polimerase II/fisiologia , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Caseína Quinase I/fisiologia , Metiltransferases/fisiologia , Modelos Moleculares , Mutação/genética , Peptídeos/fisiologia , Fosforilação , Ligação Proteica , Proteínas Quinases/genética , Estrutura Terciária de Proteína , Splicing de RNA/genética , Saccharomyces cerevisiae/metabolismo
9.
J Biol Chem ; 279(24): 24957-64, 2004 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-15047695

RESUMO

The C-terminal repeat domain (CTD) of the largest subunit of RNA polymerase II is composed of tandem heptad repeats with consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. In yeast, this heptad sequence is repeated about 26 times, and it becomes hyperphosphorylated during transcription predominantly at serines 2 and 5. A network of kinases and phosphatases combine to determine the CTD phosphorylation pattern. We sought to determine the positional specificity of phosphorylation by yeast CTD kinase-I (CTDK-I), an enzyme implicated in various nuclear processes including elongation and pre-mRNA 3'-end formation. Toward this end, we characterized monoclonal antibodies commonly employed to study CTD phosphorylation patterns and found that the H5 monoclonal antibody reacts with CTD species phosphorylated at Ser2 and/or Ser5. We therefore used antibody-independent methods to study CTDK-I, and we found that CTDK-I phosphorylates Ser5 of the CTD if the CTD substrate is either unphosphorylated or prephosphorylated at Ser2. When Ser5 is already phosphorylated, CTDK-I phosphorylates Ser2 of the CTD. We also observed that CTDK-I efficiently generates doubly phosphorylated CTD repeats; CTD substrates that already contain Ser2-PO(4) or Ser5-PO(4) are more readily phosphorylated CTDK-I than unphosphorylby ated CTD substrates.


Assuntos
Proteínas Quinases/metabolismo , RNA Polimerase II/metabolismo , Sequências Repetitivas de Aminoácidos , Sequência de Aminoácidos , Anticorpos Monoclonais/imunologia , Dados de Sequência Molecular , Fosforilação , Proteínas Quinases/química , RNA Polimerase II/química , Saccharomycetales/enzimologia , Serina/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa