Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Mol Ecol ; 33(11): e17360, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38656687

RESUMO

Connectivity is a fundamental process of population dynamics in marine ecosystems. In the last decade, with the emergence of new methods, combining different approaches to understand the patterns of connectivity among populations and their regulation has become increasingly feasible. The Western Antarctic Peninsula (WAP) is characterized by complex oceanographic dynamics, where local conditions could act as barriers to population connectivity. Here, the notothenioid fish Harpagifer antarcticus, a demersal species with a complex life cycle (adults with poor swim capabilities and pelagic larvae), was used to assess connectivity along the WAP by combining biophysical modelling and population genomics methods. Both approaches showed congruent patterns. Areas of larvae retention and low potential connectivity, observed in the biophysical model output, coincide with four genetic groups within the WAP: (1) South Shetland Islands, (2) Bransfield Strait, (3) the central and (4) the southern area of WAP (Marguerite Bay). These genetic groups exhibited limited gene flow between them, consistent with local oceanographic conditions, which would represent barriers to larval dispersal. The joint effect of geographic distance and larval dispersal by ocean currents had a greater influence on the observed population structure than each variable evaluated separately. The combined effect of geographic distance and a complex oceanographic dynamic would be generating limited levels of population connectivity in the fish H. antarcticus along the WAP. Based on this, population connectivity estimations and priority areas for conservation were discussed, considering the marine protected area proposed for this threatened region of the Southern Ocean.


Assuntos
Fluxo Gênico , Genética Populacional , Animais , Regiões Antárticas , Dinâmica Populacional , Perciformes/genética , Genômica , Ecossistema , Larva/genética , Peixes/genética
2.
Mol Ecol ; 31(7): 1980-1994, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35080070

RESUMO

Most marine invertebrates disperse during a planktonic larval stage that may drift for weeks with ocean currents. A challenge for larvae of coastal species is to return to coastal nursery habitats. Shore crab (Carcinus maenas L.) larvae are known to show tidal rhythmicity in vertical migration in tidal areas and circadian rhythmicity in microtidal areas, which seems to increase successful coastal settlement. We studied genome-wide differentiation based on 24,000 single nucleotide polymorphisms of 12 native populations of shore crab sampled from a large tidal amplitude gradient from macrotidal (~8 m) to microtidal (~0.2 m). Dispersal and recruitment success of larvae was assessed with a Lagrangian biophysical model, which showed a strong effect of larval behaviour on long-term connectivity, and dispersal barriers that partly coincided with different tidal environments. The genetic population structure showed a subdivision of the samples into three clusters, which represent micro-, meso- and macrotidal areas. The genetic differentiation was mostly driven by 0.5% outlier loci, which showed strong allelic clines located at the limits between the three tidal areas. Demographic modelling suggested that the two genetic barriers have different origins. Differential gene expression of two clock genes (cyc and pdp1) further highlighted phenotypic differences among genetic clusters that are potentially linked to the differences in larval behaviour. Taken together, our seascape genomic study suggests that tidal regime acts as a strong selection force on shore crab population structure, consistent with larval behaviour affecting dispersal and recruitment success.


Assuntos
Braquiúros , Animais , Braquiúros/genética , Ecossistema , Genética Populacional , Genômica , Larva/genética
3.
Glob Chang Biol ; 28(17): 5310-5319, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35733273

RESUMO

Climate change influences the ocean's physical and biogeochemical conditions, causing additional pressures on marine environments and ecosystems, now and in the future. Such changes occur in environments that already today suffer under pressures from, for example, eutrophication, pollution, shipping, and more. We demonstrate how to implement climate change into regional marine spatial planning by introducing data of future temperature, salinity, and sea ice cover from regional ocean climate model projections to an existing cumulative impact model. This makes it possible to assess climate change impact in relation to pre-existing cumulative impact from current human activities. Results indicate that end-of-century projected climate change alone is a threat of the same magnitude as the combination of all current pressures to the marine environment. These findings give marine planners and policymakers forewarning on how future climate change may impact marine ecosystems, across space, emission scenarios, and in relation to other pressures.


Assuntos
Mudança Climática , Ecossistema , Eutrofização , Humanos , Oceanos e Mares , Salinidade , Temperatura
4.
Ecol Appl ; 30(6): e02121, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32159897

RESUMO

The eelgrass Zostera marina is an important foundation species of coastal areas in the Northern Hemisphere, but is continuing to decline, despite management actions. The development of new management tools is therefore urgent in order to prioritize limited resources for protecting meadows most vulnerable to local extinctions and identifying most valuable present and historic meadows to protect and restore, respectively. We assessed 377 eelgrass meadows along the complex coastlines of two fjord regions on the Swedish west coast-one is currently healthy and the other is substantially degraded. Shoot dispersal for all meadows was assessed with Lagrangian biophysical modeling (scale: 100-1,000 m) and used for barrier analysis and clustering; a subset (n = 22) was also assessed with population genetic methods (20 microsatellites) including diversity, structure, and network connectivity. Both approaches were in very good agreement, resulting in seven subpopulation groupings or management units (MUs). The MUs correspond to a spatial scale appropriate for coastal management of "waterbodies" used in the European Water Framework Directive. Adding demographic modeling based on the genetic and biophysical data as a third approach, we are able to assess past, present, and future metapopulation dynamics to identify especially vulnerable and valuable meadows. In a further application, we show how the biophysical approach, using eigenvalue perturbation theory (EPT) and distribution records from the 1980s, can be used to identify lost meadows where restoration would best benefit the present metapopulation. The combination of methods, presented here as a toolbox, allows the assessment of different temporal and spatial scales at the same time, as well as ranking of specific meadows according to key genetic, demographic and ecological metrics. It could be applied to any species or region, and we exemplify its versatility as a management guide for eelgrass along the Swedish west coast.


Assuntos
Ecossistema , Zosteraceae , Demografia , Repetições de Microssatélites , Suécia , Zosteraceae/genética
5.
J Environ Manage ; 264: 110447, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32364954

RESUMO

Over two million leisure boats use the coastal areas of the Baltic Sea for recreational purposes. The majority of these boats are painted with toxic antifouling paints that release biocides into the coastal ecosystems and negatively impact non-targeted species. Regulations concerning the use of antifouling paints differ dramatically between countries bordering the Baltic Sea and most of them lack the support of biological data. In the present study, we collected data on biofouling in 17 marinas along the Baltic Sea coast during three consecutive boating seasons (May-October 2014, 2015 and 2016). In this context, we compared different monitoring strategies and developed a fouling index (FI) to characterise marinas according to the recorded biofouling abundance and type (defined according to the hardness and strength of attachment to the substrate). Lower FI values, i.e. softer and/or less abundant biofouling, were consistently observed in marinas in the northern Baltic Sea. The decrease in FI from the south-western to the northern Baltic Sea was partially explained by the concomitant decrease in salinity. Nevertheless, most of the observed changes in biofouling seemed to be determined by local factors and inter-annual variability, which emphasizes the necessity for systematic monitoring of biofouling by end-users and/or authorities for the effective implementation of non-toxic antifouling alternatives in marinas. Based on the obtained results, we discuss how monitoring programs and other related measures can be used to support adaptive management strategies towards more sustainable antifouling practices in the Baltic Sea.


Assuntos
Incrustação Biológica , Desinfetantes , Ecossistema , Pintura , Navios
6.
BMC Ecol ; 19(1): 22, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164112

RESUMO

BACKGROUND: In the brackish Baltic Sea, shedding of adventitious branches is central to asexual recruitment of new thalli in the brown algae Fucus vesiculosus and F. radicans. To test which factors influence the formation of adventitious branches in brackish and in more marine conditions, we sampled 29 Fucus sites in the Baltic Sea (salinity 3-11) and 18 sites from the Danish straits, Kattegat, Skagerrak, and the North Sea (salinity 15-35). Separately for each area, we used structural equation modelling to determine which of eight predictor factors (phosphate, nitrate, chlorophyll-a (as a proxy for turbidity), temperature, salinity, oxygen, grazing pressure, and thallus area) best explained observed numbers of adventitious branches. RESULTS: In more marine waters, high yearly average values of phosphate, salinity and turbidity had positive effects on the formation of adventitious branches. In brackish-waters, however, high numbers of adventitious branches were found in areas with low yearly average values of temperature, salinity and oxygen. Grazing intensity had no significant effect in either of the two study areas, contrasting findings from studies in other areas. In areas with both sexually and asexually reproducing Fucus individuals, clones had on average more adventitious branches than unique genotypes, although there was strong variation among clonal lineages. CONCLUSION: This study is the first to investigate multiple potential drivers of formation of adventitious branches in natural populations of Fucus. Our results suggest that several different factors synergistically and antagonistically affect the growth of adventitious branches in a complex way, and that the same factor (salinity) can have opposing effects in different areas.


Assuntos
Fucus , Alga Marinha , Genótipo , Salinidade
7.
Environ Microbiol ; 20(8): 2783-2795, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29614214

RESUMO

Marine planktonic microalgae have potentially global dispersal, yet reduced gene flow has been confirmed repeatedly for several species. Over larger distances (>200 km) geographic isolation and restricted oceanographic connectivity have been recognized as instrumental in driving population divergence. Here we investigated whether similar patterns, that is, structured populations governed by geographic isolation and/or oceanographic connectivity, can be observed at smaller (6-152 km) geographic scales. To test this we established 425 clonal cultures of the planktonic diatom Skeletonema marinoi collected from 11 locations in the Archipelago Sea (northern Baltic Sea). The region is characterized by a complex topography, entailing several mixing regions of which four were included in the sampling area. Using eight microsatellite markers and conventional F-statistics, significant genetic differentiation was observed between several sites. Moreover, Bayesian cluster analysis revealed the co-occurrence of two genetic groups spread throughout the area. However, geographic isolation and oceanographic connectivity could not explain the genetic patterns observed. Our data reveal hierarchical genetic structuring whereby despite high dispersal potential, significantly diverged populations have developed over small spatial scales. Our results suggest that biological characteristics and historical events may be more important in generating barriers to gene flow than physical barriers at small spatial scales.


Assuntos
Diatomáceas/genética , Plâncton/genética , Teorema de Bayes , Fluxo Gênico , Repetições de Microssatélites , Oceanos e Mares
8.
Mol Ecol ; 26(17): 4452-4466, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28626905

RESUMO

Adaptation to local conditions is a fundamental process in evolution; however, mechanisms maintaining local adaptation despite high gene flow are still poorly understood. Marine ecosystems provide a wide array of diverse habitats that frequently promote ecological adaptation even in species characterized by strong levels of gene flow. As one example, populations of the marine fish Atlantic cod (Gadus morhua) are highly connected due to immense dispersal capabilities but nevertheless show local adaptation in several key traits. By combining population genomic analyses based on 12K single nucleotide polymorphisms with larval dispersal patterns inferred using a biophysical ocean model, we show that Atlantic cod individuals residing in sheltered estuarine habitats of Scandinavian fjords mainly belong to offshore oceanic populations with considerable connectivity between these diverse ecosystems. Nevertheless, we also find evidence for discrete fjord populations that are genetically differentiated from offshore populations, indicative of local adaptation, the degree of which appears to be influenced by connectivity. Analyses of the genomic architecture reveal a significant overrepresentation of a large ~5 Mb chromosomal rearrangement in fjord cod, previously proposed to comprise genes critical for the survival at low salinities. This suggests that despite considerable connectivity with offshore populations, local adaptation to fjord environments may be enabled by suppression of recombination in the rearranged region. Our study provides new insights into the potential of local adaptation in high gene flow species within fine geographical scales and highlights the importance of genome architecture in analyses of ecological adaptation.


Assuntos
Adaptação Fisiológica/genética , Ecossistema , Gadus morhua/genética , Fluxo Gênico , Animais , Oceano Atlântico , Estuários , Rearranjo Gênico , Genoma , Polimorfismo de Nucleotídeo Único , Países Escandinavos e Nórdicos
9.
Biofouling ; 33(8): 613-623, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28792237

RESUMO

Current antifouling (AF) technologies are based on the continuous release of biocides into the water, and consequently discharge into the environment. Major efforts to develop more environmentally friendly coatings require efficient testing in laboratory assays, followed by field studies. Barnacles are important fouling organisms worldwide, increasing hydrodynamic drag on ships and damaging coatings on underwater surfaces, and thus are extensively used as models in AF research, mostly in static, laboratory-based systems. Reliable flow-through test assays for the screening of biocide-containing AF paints, however, are rare. Herein, a flow-through bioassay was developed to screen for diverse low-release biocide paints, and to evaluate their effects on pre- and post-settlement traits in barnacles. The assay distinguishes between the effects from direct surface contact and bulk-water effects, which are crucial when developing low-emission AF coatings. This flow-through bioassay adds a new tool for rapid laboratory-based first-stage screening of candidate compounds and novel AF formulations.


Assuntos
Incrustação Biológica/prevenção & controle , Bioensaio/métodos , Desinfetantes/farmacologia , Hidrodinâmica , Thoracica/efeitos dos fármacos , Animais , Bioensaio/instrumentação , Desinfetantes/química , Desenho de Equipamento , Pintura , Navios , Solubilidade
10.
Biofouling ; 31(2): 201-10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25775096

RESUMO

A challenge for the next generation marine antifouling (AF) paints is to deliver minimum amounts of biocides to the environment. The candidate AF compound medetomidine is here shown to be released at very low concentrations, ie ng ml(-1) day(-1). Moreover, the release rate of medetomidine differs substantially depending on the formulation of the paint, while inhibition of barnacle settlement is independent of release to the ambient water, ie the paint with the lowest release rate was the most effective in impeding barnacle colonisation. This highlights the critical role of chemical interactions between biocide, paint carrier and the solid/aqueous interface for release rate and AF performance. The results are discussed in the light of differential affinity states of the biocide, predicting AF activity in terms of a high surface affinity and preserved bioavailability. This may offer a general framework for the design of low-release paint systems using biocides for protection against biofouling on marine surfaces.


Assuntos
Incrustação Biológica/prevenção & controle , Desinfetantes/química , Medetomidina/química , Pintura , Thoracica/efeitos dos fármacos , Animais , Disponibilidade Biológica , Estrutura Molecular , Thoracica/fisiologia , Tolazolina/química
11.
Proc Biol Sci ; 280(1773): 20131599, 2013 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-24174105

RESUMO

We investigated the gene flow of the common marine diatom, Skeletonema marinoi, in Scandinavian waters and tested the null hypothesis of panmixia. Sediment samples were collected from the Danish Straits, Kattegat and Skagerrak. Individual strains were established from germinated resting stages. A total of 350 individuals were genotyped by eight microsatellite markers. Conventional F-statistics showed significant differentiation between the samples. We therefore investigated whether the genetic structure could be explained using genetic models based on isolation by distance (IBD) or by oceanographic connectivity. Patterns of oceanographic circulation are seasonally dependent and therefore we estimated how well local oceanographic connectivity explains gene flow month by month. We found no significant relationship between genetic differentiation and geographical distance. Instead, the genetic structure of this dominant marine primary producer is best explained by local oceanographic connectivity promoting gene flow in a primarily south to north direction throughout the year. Oceanographic data were consistent with the significant FST values between several pairs of samples. Because even a small amount of genetic exchange prevents the accumulation of genetic differences in F-statistics, we hypothesize that local retention at each sample site, possibly as resting stages, is an important component in explaining the observed genetic structure.


Assuntos
Diatomáceas/genética , Fluxo Gênico , Genótipo , Repetições de Microssatélites , Modelos Genéticos , Dados de Sequência Molecular , Oceanos e Mares , Filogeografia , Movimentos da Água
12.
Evol Appl ; 16(2): 530-541, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36793681

RESUMO

The Centre for Marine Evolutionary Biology (CeMEB) at the University of Gothenburg, Sweden, was established in 2008 through a 10-year research grant of 8.7 m€ to a team of senior researchers. Today, CeMEB members have contributed >500 scientific publications, 30 PhD theses and have organised 75 meetings and courses, including 18 three-day meetings and four conferences. What are the footprints of CeMEB, and how will the centre continue to play a national and international role as an important node of marine evolutionary research? In this perspective article, we first look back over the 10 years of CeMEB activities and briefly survey some of the many achievements of CeMEB. We furthermore compare the initial goals, as formulated in the grant application, with what has been achieved, and discuss challenges and milestones along the way. Finally, we bring forward some general lessons that can be learnt from a research funding of this type, and we also look ahead, discussing how CeMEB's achievements and lessons can be used as a springboard to the future of marine evolutionary biology.

13.
Proc Biol Sci ; 279(1736): 2163-70, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22298854

RESUMO

The intermediate disturbance hypothesis (IDH) and the dynamic equilibrium model (DEM) are influential theories in ecology. The IDH predicts large species numbers at intermediate levels of disturbance and the DEM predicts that the effect of disturbance depends on the level of productivity. However, various indices of diversity are considered more commonly than the predicted number of species in tests of the hypotheses. This issue reaches beyond the scientific community as the predictions of the IDH and the DEM are used in the management of national parks and reserves. In order to compare responses with disturbance among measures of biodiversity, we used two different approaches of mathematical modelling and conducted an extensive meta-analysis. Two-thirds of the surveyed studies present different results for different diversity measures. Accordingly, the meta-analysis showed a narrow range of negative quadratic regression components for richness, but not evenness. Also, the two models support the IDH and the DEM, respectively, when biodiversity is measured as species richness, but predict evenness to increase with increasing disturbance, for all levels of productivity. Consequently, studies that use compound indices of diversity should present logical arguments, a priori, to why a specific index of diversity should peak in response to disturbance.


Assuntos
Biodiversidade , Ecossistema , Modelos Teóricos
14.
Proc Natl Acad Sci U S A ; 106(27): 11177-82, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19549831

RESUMO

Many planktonic microalgae produce a range of toxins and may form harmful algal blooms. One hypothesis is that some toxins are allelopathic, suppressing the growth of competitors, and it has been suggested that allelopathy may be one important mechanism causing algal blooms. In a metaanalysis of recent experimental work, we looked for evidence that allelopathy may explain the initiation of algal blooms. With few exceptions, allelopathic effects were only significant at very high cell densities typical of blooms. We conclude that there is no experimental support for allelopathy at prebloom densities, throwing doubts on allelopathy as a mechanism in bloom formation. Most studies tested allelopathy using cell-free manipulations. With simple models we show that cell-free manipulations may underestimate allelopathy at low cell densities if effects are transmitted during cell-cell interactions. However, we suggest that the evolution of allelopathy under field conditions may be unlikely even if based on cell-cell interactions. The spatial dispersion of cells in turbulent flow will make it difficult for an allelopathic cell to receive an exclusive benefit, and a dispersion model shows that dividing cells are rapidly separated constraining clone selection. Instead, we propose that reported allelopathic effects may be nonadaptive side effects of predator-prey or casual parasitic cell-cell interactions.


Assuntos
Ecossistema , Eutrofização/efeitos dos fármacos , Toxinas Marinhas/toxicidade , Eucariotos/citologia , Eucariotos/efeitos dos fármacos , Toxinas Marinhas/análise , Metanálise como Assunto , Modelos Biológicos , Reologia , Fatores de Tempo
15.
Philos Trans R Soc Lond B Biol Sci ; 377(1846): 20210024, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35067094

RESUMO

Dispersal is generally difficult to directly observe. Instead, dispersal is often inferred from genetic markers and biophysical modelling where a correspondence indicates that dispersal routes and barriers explain a significant part of population genetic differentiation. Biophysical models are used for wind-driven dispersal in terrestrial environments and for propagules drifting with ocean currents in the sea. In the ocean, such seascape genetic or seascape genomic studies provide promising tools in applied sciences, as actions within management and conservation rely on an understanding of population structure, genetic diversity and presence of local adaptations, all dependent on dispersal within the metapopulation. Here, we surveyed 87 studies that combine population genetics and biophysical models of dispersal. Our aim was to understand if biophysical dispersal models can generally explain genetic differentiation. Our analysis shows that genetic differentiation and lack of genetic differentiation can often be explained by dispersal, but the realism of the biophysical model, as well as local geomorphology and species biology also play a role. The review supports the use of a combination of both methods, and we discuss our findings in terms of recommendations for future studies and pinpoint areas where further development is necessary, particularly on how to compare both approaches. This article is part of the theme issue 'Species' ranges in the face of changing environments (part I)'.


Assuntos
Genética Populacional , Genômica , Adaptação Fisiológica , Marcadores Genéticos , Variação Genética , Modelos Genéticos
16.
J Theor Biol ; 290: 37-45, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21924275

RESUMO

Metapopulation theory for a long time has assumed dispersal to be symmetric, i.e. patches are connected through migrants dispersing bi-directionally without a preferred direction. However, for natural populations symmetry is often broken, e.g. for species in the marine environment dispersing through the transport of pelagic larvae with ocean currents. The few recent studies of asymmetric dispersal concluded that asymmetry has a distinct negative impact on the persistence of metapopulations. Detailed analysis, however, revealed that these previous studies might have been unable to properly disentangle the effect of symmetry from other potentially confounding properties of dispersal patterns. We resolve this issue by systematically investigating the symmetry of dispersal patterns and its impact on metapopulation persistence. Our main analysis based on a metapopulation model equivalent to previous studies but now applied on regular dispersal patterns aims to isolate the effect of dispersal symmetry on metapopulation persistence. Our results suggest that asymmetry in itself does not imply negative effects on metapopulation persistence. For this reason we recommend to investigate it in connection with other properties of dispersal instead of in isolation.


Assuntos
Ecossistema , Modelos Biológicos , Algoritmos , Migração Animal , Animais , Dinâmica Populacional , Processos Estocásticos
17.
Ecol Appl ; 21(5): 1861-70, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21830724

RESUMO

Conservation and management of natural resources and biodiversity need improved criteria to select functional networks of protected areas. The connectivity within networks due to dispersal is rarely considered, partly because it is unclear how connectivity information can be included in the selection of protected areas. We present a novel and general method that applies eigenvalue perturbation theory (EPT) to select optimum networks of protected areas based on connectivity. At low population densities, characteristic of threatened populations, this procedure selects networks that maximize the growth rate of the overall network. This method offers an improved link between connectivity and metapopulation dynamics. Our framework is applied to connectivities estimated for marine larvae and demonstrates that, for open populations, the best strategy is to protect areas acting as both strong donors and recipients of recruits. It should be possible to implement an EPT framework for connectivity analysis into existing holistic tools for design of protected areas.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Animais , Simulação por Computador , Modelos Logísticos , Modelos Biológicos , Oceanos e Mares
18.
J Nat Prod ; 74(3): 449-54, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21338120

RESUMO

The current work shows that two structurally similar cyclodipeptides, barettin (1) and 8,9-dihydrobarettin (2), produced by the coldwater marine sponge Geodia barretti Bowerbank act in synergy to deter larvae of surface settlers and may also be involved in defense against grazers. Previously, 1 and 2 were demonstrated to bind specifically to serotonergic 5-HT receptors. It may be suggested that chemical defense in G. barretti involves a synergistic action where one of the molecular targets is a 5-HT receptor. A mixture of 1 and 2 lowered the EC(50) of larval settlement as compared to the calculated theoretical additive effect of the two compounds. Moreover, an in situ sampling at 120 m depth using a remotely operated vehicle revealed that the sponge releases these two compounds to the ambient water. Thus, it is suggested that the synergistic action of 1 and 2 may benefit the sponge by reducing the expenditure of continuous production and release of its chemical defense substances. Furthermore, a synergistic action between structurally closely related compounds produced by the same bioenzymatic machinery ought to be the most energy effective for the organism and, thus, is more common than synergy between structurally indistinct compounds.


Assuntos
Depsipeptídeos/isolamento & purificação , Geodia/química , Hidrocarbonetos Bromados/isolamento & purificação , Peptídeos Cíclicos/isolamento & purificação , Animais , Anomuros/efeitos dos fármacos , Temperatura Baixa , Depsipeptídeos/química , Hidrocarbonetos Bromados/química , Larva/efeitos dos fármacos , Biologia Marinha , Estrutura Molecular , Peptídeos Cíclicos/química , Receptores de Serotonina/efeitos dos fármacos , Thoracica/efeitos dos fármacos , Água
19.
Evol Appl ; 13(5): 974-990, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32431747

RESUMO

Incorporating species' eco-evolutionary responses to human-caused disturbances remains a challenge in marine management efforts. A prerequisite is knowledge of geographic structure and scale of genetic diversity and connectivity-the so-called seascape genetic patterns. The Baltic Sea is an excellent model system for studies linking seascape genetics with effects of anthropogenic stress. However, seascape genetic patterns in this area are only described for a few species and are completely unknown for invertebrate herbivores, which constitute a critical part of the ecosystem. This information is crucial for sustainable management, particularly under future scenarios of rapid environmental change. Here, we investigate the population genetic structure among 31 locations throughout the Baltic Sea, of which 45% were located in marine protected areas, in one of the most important herbivores of this region, the isopod crustacean Idotea balthica, using an array of 33,774 genome-wide SNP markers derived from 2b-RAD sequencing. In addition, we generate a biophysical connectivity matrix for I. balthica from a combination of oceanographic current models and estimated life history traits. We find population structure on scales of hundreds of kilometers across the Baltic Sea, where genomic patterns in most cases closely match biophysical connectivity, indicating passive transport with oceanographic currents as an important mean of dispersal in this species. We also find a reduced genetic diversity in terms of heterozygosity along the main salinity gradient of the Baltic Sea, suggesting periods of low population size. Our results provide crucial information for the management of a key ecosystem species under expected changes in temperature and salinity following global climate change in a marine coastal area.

20.
Sci Total Environ ; 709: 136144, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31905569

RESUMO

Eutrophication is a serious threat to aquatic ecosystems globally with pronounced negative effects in the Baltic and other semi-enclosed estuaries and regional seas, where algal growth associated with excess nutrients causes widespread oxygen free "dead zones" and other threats to sustainability. Decades of policy initiatives to reduce external (land-based and atmospheric) nutrient loads have so far failed to control Baltic Sea eutrophication, which is compounded by significant internal release of legacy phosphorus (P) and biological nitrogen (N) fixation. Farming and harvesting of the native mussel species (Mytilus edulis/trossulus) is a promising internal measure for eutrophication control in the brackish Baltic Sea. Mussels from the more saline outer Baltic had higher N and P content than those from either the inner or central Baltic. Despite their relatively low nutrient content, harvesting farmed mussels from the central Baltic can be a cost-effective complement to land-based measures needed to reach eutrophication status targets and is an important contributor to circularity. Cost effectiveness of nutrient removal is more dependent on farm type than mussel nutrient content, suggesting the need for additional development of farm technology. Furthermore, current regulations are not sufficiently conducive to implementation of internal measures, and may constitute a bottleneck for reaching eutrophication status targets in the Baltic Sea and elsewhere.


Assuntos
Bivalves , Agricultura , Animais , Países Bálticos , Eutrofização , Nitrogênio , Oceanos e Mares , Fósforo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa