Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(28): 15119-15126, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34251005

RESUMO

It has previously been predicted [H.-I. Yoo and M. Martin, Phys. Chem. Chem. Phys., 2010, 12, 14699] and observed [E. Kim, et al., Solid State Ionics, 2013, 235, 22] that the open-circuit voltage U of a galvanic cell, involving a ternary or higher compound with more than one kind of mobile ionic carrier, is path- and time-dependent upon imposition or removal of the mobile components' chemical potential differences, in contradistinction to the cell involving a binary compound. This has been attributed [H.-I. Yoo and M. Martin, Phys. Chem. Chem. Phys., 2010, 12 14699; J.-Y. Yoon, et al., Solid State Ionics, 2012, 213, 22] to the decoupled redistributions of multiple mobile components or multi-fold relaxation. We hereby experimentally demonstrate with SrTi0.982Al0.018O3-Δ, known to have an appreciable water solubility depending on temperature, that introduction of a secondary ionic carrier H+ in addition to the native O2- indeed renders the otherwise time-independent U time-dependent; and that this phenomenon may, thus, be employed to probe the presence of a secondary ionic carrier, e.g., H+ in addition to the primary O2- in BaTi0.982Al0.018O3-Δ whose water solubility is yet to be known. The temporal behavior of U of SrTi0.982Al0.018O3-Δ subjected to the two fixed chemical potential differences, ΔµO and ΔµH, is precisely delineated in terms of two-fold relaxation of H and O, yielding their chemical diffusivity values, and consequently, the ambiguity with the EMF-method to determine the ionic transference numbers of a multinary compound is cleared away.

2.
Nano Lett ; 19(12): 8644-8652, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31671269

RESUMO

Controlled phase conversion in polymorphic transition metal dichalcogenides (TMDs) provides a new synthetic route for realizing tunable nanomaterials. Most conversion methods from the stable 2H to metastable 1T phase are limited to kinetically slow cation insertion into atomically thin layered TMDs for charge transfer from intercalated ions. Here, we report that anion extraction by the selective reaction between carbon monoxide (CO) and chalcogen atoms enables predictive and scalable TMD polymorph control. Sulfur vacancy, induced by anion extraction, is a key factor in molybdenum disulfide (MoS2) polymorph conversion without cation insertion. Thermodynamic MoS2-CO-CO2 ternary phase diagram offers a processing window for efficient sulfur vacancy formation with precisely controlled MoS2 structures from single layer to multilayer. To utilize our efficient phase conversion, we synthesize vertically stacked 1T-MoS2 layers in carbon nanofibers, which exhibit highly efficient hydrogen evolution reaction catalytic activity. Anion extraction induces the polymorph conversion of tungsten disulfide (WS2) from 2H to 1T. This reveals that our method can be utilized as a general polymorph control platform. The versatility of the gas-solid reaction-based polymorphic control will enable the engineering of metastable phases in 2D TMDs for further applications.

3.
RSC Adv ; 11(40): 24702-24708, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35481048

RESUMO

The electrochemical CO2 reduction reaction (CO2RR), which converts CO2 into value-added feedstocks and renewable fuels, has been increasingly studied as a next-generation energy and environmental solution. Here, we report that single-atom metal sites distributed around active materials can enhance the CO2RR performance by controlling the Lewis acidity-based local CO2 concentration. By utilizing the oxidation Gibbs free energy difference between silver (Ag), zinc (Zn), and carbon (C), we can produce Ag nanoparticle-embedded carbon nanofibers (CNFs) where Zn is atomically dispersed by a one-pot, self-forming thermal calcination process. The CO2RR performance of AgZn-CNF was investigated by a flow cell with a gas diffusion electrode (GDE). Compared to Ag-CNFs without Zn species (53% at -0.85 V vs. RHE), the faradaic efficiency (FE) of carbon monoxide (CO) was approximately 20% higher in AgZn-CNF (75% at -0.82 V vs. RHE) with 1 M KOH electrolyte.

4.
Sci Rep ; 9(1): 19539, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31862953

RESUMO

Both high activity and mass production potential are important for bifunctional electrocatalysts for overall water splitting. Catalytic activity enhancement was demonstrated through the formation of CoS2 nanoparticles with mono-phase and extremely porous structures. To fabricate porous structures at the nanometer scale, Co-based metal-organic frameworks (MOFs), namely a cobalt Prussian blue analogue (Co-PBA, Co3[Co(CN)6]2), was used as a porous template for the CoS2. Then, controlled sulfurization annealing converted the Co-PBA to mono-phase CoS2 nanoparticles with ~ 4 nm pores, resulting in a large surface area of 915.6 m2 g-1. The electrocatalysts had high activity for overall water splitting, and the overpotentials of the oxygen evolution reaction and hydrogen evolution reaction under the operating conditions were 298 mV and -196 mV, respectively, at 10 mA cm-2.

5.
ACS Nano ; 12(8): 8187-8196, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30059622

RESUMO

Precise control of the oxidation state of transition-metal oxides, such as copper, is important for high selectivity of CO2 reduction in an aqueous condition to compete with the reduction of water. The phase of copper oxide nanofibers was controlled by predictive synthesis, which controls the nanoscale gas-solid reaction by considering thermodynamics and kinetics. The driving force of the phase transformation between the different oxidation states of copper oxide is calculated by comparing the Gibbs free energy of each of the oxidation states. From the calculation, the kinetically processable window for the fabrication of Cu2O in which monophase Cu2O can be fabricated in a reasonable reaction time scale is discovered. Herein, we report the monophase Cu2O nanofiber photocathode, which photoelectrochemically converted CO2 into methanol with over 90% selectivity in an aqueous electrolyte, and a hierarchical structure is developed to optimize the photoactivity and stability of the electrode. Our work suggests a rational design of the calcination strategy for precisely controlling the oxidation states of transition metals that can be applied to various applications in which the phase of the materials plays an important role.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa