Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(37): 14736-14741, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31460760

RESUMO

Preparation of an unzipping polyester is reported. The monomer was prepared from benzoic acid in a four-step sequence. Step growth polymerization of the monomer provides the target polymer. Efficient depolymerization upon irradiation at 254 nm was confirmed with a quantum yield of >0.8. The photolysis mechanism was investigated, and the results of radical trapping experiments are consistent with an initial Norrish type I like homolysis followed by a radical mediated depropagation reaction driven by aromatization.

2.
Org Biomol Chem ; 17(9): 2486-2491, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30756107

RESUMO

A 4,5-dithienylimidazolium salt outfitted with pendant styrenyl groups was synthesized and studied. The salt was found to undergo reversible electrocyclization upon UV irradiation; subsequent exposure to visible light reversed the reaction. Acyclic diene metathesis (ADMET) polymerization of the salt afforded a novel fluorescent polyelectrolyte.

3.
Nat Chem ; 16(7): 1160-1168, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38589626

RESUMO

Carbon capture, utilization and storage is a key yet cost-intensive technology for the fight against climate change. Single-component water-lean solvents have emerged as promising materials for post-combustion CO2 capture, but little is known regarding their mechanism of action. Here we present a combined experimental and modelling study of single-component water-lean solvents, and we find that CO2 capture is accompanied by the self-assembly of reverse-micelle-like tetrameric clusters in solution. This spontaneous aggregation leads to stepwise cooperative capture phenomena with highly contrasting mechanistic and thermodynamic features. The emergence of well-defined supramolecular architectures displaying a hydrogen-bonded internal core, reminiscent of enzymatic active sites, enables the formation of CO2-containing molecular species such as carbamic acid, carbamic anhydride and alkoxy carbamic anhydrides. This system extends the scope of adducts and mechanisms observed during carbon capture. It opens the way to materials with a higher CO2 storage capacity and provides a means for carbamates to potentially act as initiators for future oligomerization or polymerization of CO2.

4.
ACS Nano ; 16(2): 2494-2510, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35090344

RESUMO

Intravenous nanoparticle hemostats offer a potentially attractive approach to promote hemostasis, in particular for inaccessible wounds such as noncompressible torso hemorrhage (NCTH). In this work, particle size was tuned over a range of <100-500 nm, and its effect on nanoparticle-platelet interactions was systematically assessed using in vitro and in vivo experiments. Smaller particles bound a larger percentage of platelets per mass of particle delivered, while larger particles resulted in higher particle accumulation on a surface of platelets and collagen. Intermediate particles led to the greatest platelet content in platelet-nanoparticle aggregates, indicating that they may be able to recruit more platelets to the wound. In biodistribution studies, smaller and intermediate nanoparticles exhibited longer circulation lifetimes, while larger nanoparticles resulted in higher pulmonary accumulation. The particles were then challenged in a 2 h lethal inferior vena cava (IVC) puncture model, where intermediate nanoparticles significantly increased both survival and injury-specific targeting relative to saline and unfunctionalized particle controls. An increase in survival in the second hour was likewise observed in the smaller nanoparticles relative to saline controls, though no significant increase in survival was observed in the larger nanoparticle size. In conjunction with prior in vitro and in vivo experiments, these results suggest that platelet content in aggregates and extended nanoparticle circulation lifetimes are instrumental to enhancing hemostasis. Ultimately, this study elucidates the role of particle size in platelet-particle interactions, which can be a useful tool for engineering the performance of particulate hemostats and improving the design of these materials.


Assuntos
Hemostáticos , Nanopartículas , Hemostasia , Hemostáticos/farmacologia , Hemostáticos/uso terapêutico , Tamanho da Partícula , Distribuição Tecidual , Veia Cava Inferior
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa