Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 256: 127042, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32450352

RESUMO

Carbon nanotube (CNT) applications are increasing in consumer products, including agriculture devices, making them an important contaminant to study in the field of plant nanotoxicology. Several studies have observed the uptake and effects of CNTs in plants. However, in other studies differing results were observed on growth and physiology depending on the plant species and type of CNT. This study focused on the effects of CNTs on plant phenotype with growth, time to flowering, fruiting time as endpoints, and physiology, through amino acid and phytohormone content, in tomato after exposure to multiple types of CNTs. Plants grown in CNT-contaminated soil exhibited a delay in early growth and flowering (especially in treatments of 1 mg/kg multi-walled nanotubes (MWNTs), 10 mg/kg MWNTs, and 1 mg/kg MWNTs-COOH). However, CNTs did not affect plant growth or height later in the life cycle. No significant differences in abscisic acid (ABA) and citrulline content were observed between the treated and control plants. However, single-walled nanotube (SWNT) exposure significantly increased salicylic acid (SA) content in tomato. These results suggest that SWNTs may elicit a stress response in tomatoes. Results from this study offer more insight into how plants respond and acclimate to CNTs. These results will lead to a better understanding of CNT impact on plant phenotype and physiology.


Assuntos
Nanotubos de Carbono/química , Solanum lycopersicum/fisiologia , Frutas , Reguladores de Crescimento de Plantas/metabolismo
2.
Environ Toxicol Chem ; 38(11): 2497-2502, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31408228

RESUMO

Although many studies have evaluated the fate of per- and polyfluoroalkyl acids (PFAAs) in aquatic environments, few have observed their fate in terrestrial environments. It has been proposed that ingestion could be a major PFAA exposure route for humans. We determined PFAA uptake in radish, carrot, and alfalfa under a maximum bioavailability scenario. Bioconcentration factors (BCFs) were determined in the edible tissue of radish (perfluorobutanesulfonate [PFBS] = 72; perfluorohexanesulfonate [PFHxS] = 13; perfluoroheptanoate [PFHpA] = 65; perfluorooctanoate [PFOA] = 18; perfluorooctanesulfonate [PFOS] = 2.9; and perfluorononanoate [PFNA] = 9.6), carrot (PFBS = 5.9; PFHxS = 1.1; PFHpA = 29; PFOA = 3.1; PFOS = 1; and PFNA = 1.4), and alfalfa (PFBS = 107; PFHxS = 12; PFHpA = 91; PFOA = 10; PFOS = 1.4; and PFNA = 1.7). Some of these PFAA BCFs are as much as 2 orders of magnitude higher than those measured previously in plants grown in biosolid-amended soils. Environ Toxicol Chem 2019;38:2497-2502. © 2019 SETAC.


Assuntos
Fluorocarbonos/metabolismo , Plantas/metabolismo , Biodegradação Ambiental , Disponibilidade Biológica , Humanos , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Solo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa