Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Inform ; 51: 49-59, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24732098

RESUMO

BACKGROUND: Advanced Cardiac Life Support (ACLS) is a series of team-based, sequential and time constrained interventions, requiring effective communication and coordination of activities that are performed by the care provider team on a patient undergoing cardiac arrest or respiratory failure. The state-of-the-art ACLS training is conducted in a face-to-face environment under expert supervision and suffers from several drawbacks including conflicting care provider schedules and high cost of training equipment. OBJECTIVE: The major objective of the study is to describe, including the design, implementation, and evaluation of a novel approach of delivering ACLS training to care providers using the proposed virtual reality simulator that can overcome the challenges and drawbacks imposed by the traditional face-to-face training method. METHODS: We compare the efficacy and performance outcomes associated with traditional ACLS training with the proposed novel approach of using a virtual reality (VR) based ACLS training simulator. One hundred and forty-eight (148) ACLS certified clinicians, translating into 26 care provider teams, were enrolled for this study. Each team was randomly assigned to one of the three treatment groups: control (traditional ACLS training), persuasive (VR ACLS training with comprehensive feedback components), or minimally persuasive (VR ACLS training with limited feedback components). The teams were tested across two different ACLS procedures that vary in the degree of task complexity: ventricular fibrillation or tachycardia (VFib/VTach) and pulseless electric activity (PEA). RESULTS: The difference in performance between control and persuasive groups was not statistically significant (P=.37 for PEA and P=.1 for VFib/VTach). However, the difference in performance between control and minimally persuasive groups was significant (P=.05 for PEA and P=.02 for VFib/VTach). The pre-post comparison of performances of the groups showed that control (P=.017 for PEA, P=.01 for VFib/VTach) and persuasive (P=.02 for PEA, P=.048 for VFib/VTach) groups improved their performances significantly, whereas minimally persuasive group did not (P=.45 for PEA, P=.46 for VFib/VTach). Results also suggest that the benefit of persuasiveness is constrained by the potentially interruptive nature of these features. CONCLUSIONS: Our results indicate that the VR-based ACLS training with proper feedback components can provide a learning experience similar to face-to-face training, and therefore could serve as a more easily accessed supplementary training tool to the traditional ACLS training. Our findings also suggest that the degree of persuasive features in VR environments have to be designed considering the interruptive nature of the feedback elements.


Assuntos
Suporte Vital Cardíaco Avançado/educação , Suporte Vital Cardíaco Avançado/estatística & dados numéricos , Instrução por Computador/métodos , Instrução por Computador/estatística & dados numéricos , Comportamento Cooperativo , Avaliação Educacional , Simulação de Paciente , Interface Usuário-Computador
2.
Resuscitation ; 133: 47-52, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30261220

RESUMO

AIM: The American Heart Association (AHA) and the Institute of Medicine have published a national "call-to-action" to improve survival from in-hospital cardiopulmonary arrest (IHCA). Our aim was to determine if more-active hospital participation in standardized in-situ mock code (ISMC) training is associated with increased IHCA survival. METHODS: We performed an ecological study across a multi-state healthcare system comprising 26 hospitals. Hospital-level ISMC performance was measured during 2016-2017 and IHCA hospital discharge survival rates in 2017. We performed univariate and multivariate analysis of the hospital-level association between more-active ISCM participation and IHCA survival, with adjustment for hospital expected mortality as determined by a commercial severity scoring system. Other potential confounders were analyzed using univariate statistics. RESULTS: Hospitals with more-active ISMC participation conducted a median of 17.6 ISMCs/100 beds/year (vs 3.2/100 beds/year in less-active hospitals, p = 0.001) in 2016-2017. 220,379 patients were admitted and 3289 experienced IHCA in study hospitals in 2017, with an overall survival rate of 37.4%. Hospitals with more-active ISMC participation had a mean IHCA survival rate of 42.8% vs. 31.8% in hospitals with less-active ISMC participation (p < 0.0001), and a significantly reduced odds ratio (OR) of 0.62 for IHCA mortality (95% CI: 0.54-0.72; p < 0.0001) which was unchanged after adjustment for hospital-level expected mortality (adjusted OR: 0.62; 95% CI: 0.54-0.71; p < 0.001). CONCLUSIONS: Hospitals in our healthcare system with more-active ISMC participation have higher IHCA survival. Prospective trials are needed to establish the efficacy of standardized ISMC training programs in improving patient survival after cardiac arrest.


Assuntos
Reanimação Cardiopulmonar/educação , Competência Clínica , Parada Cardíaca/terapia , Mortalidade Hospitalar , Reanimação Cardiopulmonar/estatística & dados numéricos , Parada Cardíaca/mortalidade , Humanos , Capacitação em Serviço/métodos , Capacitação em Serviço/estatística & dados numéricos , Indicadores de Qualidade em Assistência à Saúde
3.
IEEE J Biomed Health Inform ; 18(4): 1478-84, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24122608

RESUMO

The use of virtual reality (VR) training tools for medical education could lead to improvements in the skills of clinicians while providing economic incentives for healthcare institutions. The use of VR tools can also mitigate some of the drawbacks currently associated with providing medical training in a traditional clinical environment such as scheduling conflicts and the need for specialized equipment (e.g., high-fidelity manikins). This paper presents the details of the framework and the development methodology associated with a VR-based training simulator for advanced cardiac life support, a time critical, team-based medical scenario. In addition, we also report the key findings of a usability study conducted to assess the efficacy of various features of this VR simulator through a postuse questionnaire administered to various care providers. The usability questionnaires were completed by two groups that used two different versions of the VR simulator. One version consisted of the VR trainer with it all its features and a minified version with certain immersive features disabled. We found an increase in usability scores from the minified group to the full VR group.


Assuntos
Suporte Vital Cardíaco Avançado/educação , Simulação por Computador , Instrução por Computador/instrumentação , Interface Usuário-Computador , Humanos , Jogos de Vídeo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa