Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Purinergic Signal ; 15(2): 213-221, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31098843

RESUMO

Extracellular adenosine triphosphate (ATP) regulates a broad variety of physiological functions in a number of tissues partly via ionotropic P2X receptors. Therefore, P2X receptors are promising targets for the development of therapeutically active molecules. Bile acids are cholesterol-derived amphiphilic molecules; their primary function is the facilitation of efficient nutrient fat digestion. However, bile acids have also been shown to serve as signaling molecules and as modulators of different membrane proteins and receptors including ion channels. In addition, some P2X receptors are sensitive to structurally related steroid hormones. In this study, we systematically analyzed whether rat P2X receptors are affected by micromolar concentrations of different bile acids. The taurine-conjugated bile acids TLCA, THDCA, and TCDCA potently inhibited P2X2, whereas other P2X receptors were only mildly affected. Furthermore, stoichiometry and species origin of the P2X receptors affected the modulation by bile acids: in comparison to rat P2X2, the heteromeric P2X2/3 receptor was less potently modulated and the human P2X2 receptor was potentiated by TLCA. In summary, bile acids are a new class of P2X receptor modulators, which might be of physiological relevance.


Assuntos
Ácidos e Sais Biliares/farmacologia , Receptores Purinérgicos P2X2/efeitos dos fármacos , Receptores Purinérgicos P2X2/metabolismo , Animais , Humanos , Ratos , Xenopus laevis
2.
Biophys J ; 114(6): 1321-1335, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29590590

RESUMO

The bile acid-sensitive ion channel is activated by amphiphilic substances such as bile acids or artificial detergents via membrane alterations; however, the mechanism of membrane sensitivity of the bile acid-sensitive ion channel is not known. It has also not been systematically investigated whether other members of the degenerin/epithelial Na+ channel (DEG/ENaC) gene family are affected by amphiphilic compounds. Here, we show that DEG/ENaCs ASIC1a, ASIC3, ENaC, and the purinergic receptor P2X2 are modulated by a large number of different, structurally unrelated amphiphilic substances, namely the detergents N-lauroylsarcosine, Triton X-100, and ß-octylglucoside; the fenamate flufenamic acid; the antipsychotic drug chlorpromazine; the natural phenol resveratrol; the chili pepper compound capsaicin; the loop diuretic furosemide; and the antiarrythmic agent verapamil. We determined the modification of membrane properties using large-angle x-ray diffraction experiments on model lipid bilayers, revealing that the amphiphilic compounds are positioned in a characteristic fashion either in the lipid tail group region or in the lipid head group region, demonstrating that they perturbed the membrane structure. Collectively, our results show that DEG/ENaCs and structurally related P2X receptors are modulated by diverse amphiphilic molecules. Furthermore, they suggest alterations of membrane properties by amphiphilic compounds as a mechanism contributing to modulation.


Assuntos
Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Canais de Sódio Degenerina/metabolismo , Canais Epiteliais de Sódio/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Animais , Ratos
3.
Nucleic Acids Res ; 44(22): 10631-10643, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27634931

RESUMO

There is a growing perception that long non-coding RNAs (lncRNAs) modulate cellular function. In this study, we analyzed the role of the lncRNA HOTAIR in mesenchymal stem cells (MSCs) with particular focus on senescence-associated changes in gene expression and DNA-methylation (DNAm). HOTAIR binding sites were enriched at genomic regions that become hypermethylated with increasing cell culture passage. Overexpression and knockdown of HOTAIR inhibited or stimulated adipogenic differentiation of MSCs, respectively. Modification of HOTAIR expression evoked only very moderate effects on gene expression, particularly of polycomb group target genes. Furthermore, overexpression and knockdown of HOTAIR resulted in DNAm changes at HOTAIR binding sites. Five potential triple helix forming domains were predicted within the HOTAIR sequence based on reverse Hoogsteen hydrogen bonds. Notably, the predicted triple helix target sites for these HOTAIR domains were also enriched in differentially expressed genes and close to DNAm changes upon modulation of HOTAIR Electrophoretic mobility shift assays provided further evidence that HOTAIR domains form RNA-DNA-DNA triplexes with predicted target sites. Our results demonstrate that HOTAIR impacts on differentiation of MSCs and that it is associated with senescence-associated DNAm. Targeting of epigenetic modifiers to relevant loci in the genome may involve triple helix formation with HOTAIR.


Assuntos
Células-Tronco Mesenquimais/fisiologia , RNA Longo não Codificante/fisiologia , Sequência de Bases , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Senescência Celular , Metilação de DNA , Epigênese Genética , Expressão Gênica , Humanos , Conformação de Ácido Nucleico , Ligação Proteica , RNA Longo não Codificante/química
4.
Mol Pharmacol ; 92(6): 665-675, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29025967

RESUMO

Acid-sensing ion channels (ASICs) are neuronal receptors for extracellular protons. They contribute to the excitatory postsynaptic current and to the detection of painful acidosis. Moreover, they are activated during peripheral inflammation and acidosis associated with various neuronal disorders, such as stroke and neuroinflammation, rendering them interesting drug targets. Diminazene aceturate is a small-molecule inhibitor of ASICs with a reported apparent affinity in the low micromolar range, making it an interesting lead compound. It was reported that diminazene accelerates desensitization of ASICs, which was, however, not explained mechanistically. Furthermore, a binding site in a groove of the extracellular domain was proposed but not experimentally verified. In this study, we revisited the mechanism of inhibition by diminazene and its binding site on ASIC1a, the ASIC subunit with the greatest importance in the central nervous system. We show that diminazene slowly blocks ASIC1a, leading to the apparent acceleration of desensitization and underestimating its potency; we show that diminazene indeed has a submicromolar potency at ASIC1a (IC50 0.3 µM). Moreover, we show that the inhibition is voltage-dependent and competes with that by amiloride, a pore blocker of ASICs. Finally, we identify by molecular docking a binding site in the ion pore that we confirm by site-directed mutagenesis. In summary, our results show that diminazene blocks ASIC1a by a slow open-channel block and suggest that diminazene is an interesting lead compound for high-affinity blockers of ASICs.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Canais Iônicos Sensíveis a Ácido/metabolismo , Antiprotozoários/farmacologia , Diminazena/farmacologia , Canais Iônicos Sensíveis a Ácido/genética , Amilorida/farmacologia , Animais , Sítios de Ligação , Simulação de Acoplamento Molecular , Mutação , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Xenopus laevis
5.
Genome Res ; 23(2): 248-59, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23080539

RESUMO

Pluripotent stem cells evade replicative senescence, whereas other primary cells lose their proliferation and differentiation potential after a limited number of cell divisions, and this is accompanied by specific senescence-associated DNA methylation (SA-DNAm) changes. Here, we investigate SA-DNAm changes in mesenchymal stromal cells (MSC) upon long-term culture, irradiation-induced senescence, immortalization, and reprogramming into induced pluripotent stem cells (iPSC) using high-density HumanMethylation450 BeadChips. SA-DNAm changes are highly reproducible and they are enriched in intergenic and nonpromoter regions of developmental genes. Furthermore, SA-hypomethylation in particular appears to be associated with H3K9me3, H3K27me3, and Polycomb-group 2 target genes. We demonstrate that ionizing irradiation, although associated with a senescence phenotype, does not affect SA-DNAm. Furthermore, overexpression of the catalytic subunit of the human telomerase (TERT) or conditional immortalization with a doxycycline-inducible system (TERT and SV40-TAg) result in telomere extension, but do not prevent SA-DNAm. In contrast, we demonstrate that reprogramming into iPSC prevents almost the entire set of SA-DNAm changes. Our results indicate that long-term culture is associated with an epigenetically controlled process that stalls cells in a particular functional state, whereas irradiation-induced senescence and immortalization are not causally related to this process. Absence of SA-DNAm in pluripotent cells may play a central role for their escape from cellular senescence.


Assuntos
Senescência Celular/genética , Metilação de DNA , Células-Tronco Pluripotentes/metabolismo , Adulto , Idoso , Linhagem Celular Transformada , Células Cultivadas , Senescência Celular/efeitos da radiação , Metilação de DNA/efeitos da radiação , Epigênese Genética/efeitos da radiação , Raios gama/efeitos adversos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos da radiação , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos da radiação , Pessoa de Meia-Idade , Modelos Biológicos , Células-Tronco Pluripotentes/efeitos da radiação
6.
Commun Biol ; 6(1): 701, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422581

RESUMO

Acid-sensing ion channels (ASICs) sense extracellular protons and are involved in synaptic transmission and pain sensation. ASIC1a and ASIC3 are the ASIC subunits with the highest proton sensitivity. ASIC2a in contrast has low proton sensitivity but increases the variability of ASICs by forming heteromers with ASIC1a or ASIC3. ASICs are trimers and for the ASIC1a/2a heteromer it has been shown that subunits randomly assemble with a flexible 1:2/2:1 stoichiometry. Both heteromers have almost identical proton sensitivity intermediate between ASIC1a and ASIC2a. Here, we investigated the stoichiometry of the ASIC2a/3 heteromer. Using electrophysiology, we extensively characterized, first, cells expressing ASIC2a and ASIC3 at different ratios, second, concatemeric channels with a fixed subunit stoichiometry, and, third, channels containing loss-of-functions mutations in specific subunits. Our results conclusively show that only ASIC2a/3 heteromers with a 1:2 stoichiometry had a proton-sensitivity intermediate between ASIC2a and ASIC3. In contrast, the proton sensitivity of ASIC2a/3 heteromers with a 2:1 stoichiometry was strongly acid-shifted by more than one pH unit, which suggests that they are not physiologically relevant. Together, our results reveal that the proton sensitivity of the two ASIC2a/3 heteromers is clearly different and that ASIC3 and ASIC1a make remarkably different contributions to heteromers with ASIC2a.


Assuntos
Canais Iônicos Sensíveis a Ácido , Prótons , Canais Iônicos Sensíveis a Ácido/química , Fenômenos Eletrofisiológicos , Transmissão Sináptica , Mutação
7.
Cytotherapy ; 14(4): 401-11, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22149184

RESUMO

BACKGROUND AIMS: Mesenchymal stromal cells (MSC) are heterogeneous and only a subset possesses multipotent differentiation potential. It has been proven that long-term culture has functional implications for MSC. However, little is known how the composition of subpopulation changes during culture expansion. METHODS: We addressed the heterogeneity of MSC using limiting-dilution assays at subsequent passages. In addition, we used a cellular automaton model to simulate population dynamics under the assumption of mixed numbers of remaining cell divisions until replicative senescence. The composition of cells with adipogenic or osteogenic differentiation potential during expansion was also determined at subsequent passages. RESULTS: Not every cell was capable of colony formation upon passaging. Notably, the number of fibroblastoid colony-forming units (CFU-f) decreased continuously, with a rapid decay within early passages. Therefore the CFU-f frequency might be used as an indicator of the population doublings remaining before entering the senescent state. Predictions of the cellular automaton model suited the experimental data best if most cells were already close to their replicative limit by the time of culture initiation. Analysis of differentiated clones revealed that subsets with very high levels of adipogenic or osteogenic differentiation capacity were only observed at early passages. CONCLUSIONS: These data support the notion of heterogeneity in MSC, and also with regard to replicative senescence. The composition of subpopulations changes during culture expansion and clonogenic subsets, especially those with the highest differentiation capacity, decrease already at early passages.


Assuntos
Células-Tronco Mesenquimais/citologia , Técnicas de Cultura de Células , Células Cultivadas , Senescência Celular/fisiologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco
8.
Exp Dermatol ; 18(11): 969-78, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19397697

RESUMO

Topical application of pantothenate is widely used in clinical practice for wound healing. Previous studies identified a positive effect of pantothenate on migration and proliferation of cultured fibroblasts. However, these studies were mainly descriptive with no molecular data supporting a possible model of its action. In this study, we first established conditions for an in vitro model of pantothenate wound healing and then analysed the molecular effects of pantothenate. To test the functional effect of pantothenate on dermal fibroblasts, cells were cultured and in vitro proliferation tests were performed using a standardized scratch test procedure. For all three donors analysed, a strong stimulatory effect of pantothenate at a concentration of 20 microg/ml on the proliferation of cultivated dermal fibroblasts was observed. To study the molecular mechanisms resulting in the proliferative effect of pantothenate, gene expression was analysed in dermal fibroblasts cultivated with 20 microg/ml of pantothenate compared with untreated cells using the GeneChip Human Exon 1.0 ST Array. A number of significantly regulated genes were identified including genes coding for interleukin (IL)-6, IL-8, Id1, HMOX-1, HspB7, CYP1B1 and MARCH-II. Regulation of these genes was subsequently verified by quantitative real-time polymerase chain reaction analysis. Induction of HMOX-1 expression by pantothenol and pantothenic acid in dermal cells was confirmed on the protein level using immunoblots. Functional studies revealed the enhanced suppression of free radical formation in skin fibroblasts cultured with panthenol. In conclusion, these studies provided new insight in the molecular mechanisms linked to the stimulatory effect of pantothenate and panthenol on the proliferation of dermal fibroblasts.


Assuntos
Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Pantotênico/farmacologia , Pele/citologia , Pele/efeitos dos fármacos , Proliferação de Células , Humanos , Antígeno Ki-67/biossíntese , Análise de Sequência com Séries de Oligonucleotídeos , Ácido Pantotênico/análogos & derivados , Espécies Reativas de Oxigênio , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Complexo Vitamínico B/farmacologia , Cicatrização
9.
Exp Dermatol ; 17(9): 739-47, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18557925

RESUMO

Human macrophages (M Phi) express cytochrome P450 enzymes verifying their capacity to metabolize a variety of endogenous and exogenous substances. Here we analysed the mRNA and protein expression of transport proteins involved in the uptake or export of drugs, hormones and arachidonic acid metabolites in dendritic cells (DC) and M Phi compared to their precursors - blood monocytes - using cDNA microarray, RT-PCR, Western-blot and immunostaining techniques. The transport proteins studied included members of the solute carrier organic anion transporter family (SLCO) and the multidrug resistance associated proteins (MRP) 1-6 belonging to the ATP-binding cassette subfamily C (ABCC). We found that only mRNA for SLCO-2B1, -3A1, and -4A1 were present in monocytes, M Phi and DC. Most interestingly the expression of SLCO-2B1 was markedly enhanced in M Phi as compared to monocytes and DC. The presence of mRNA for ABCC1, 3, 4, 5 and 6 in all three cell types was demonstrated. On protein level ABCC1/MRP1 which has been identified as leukotriene C(4) transporter was found to be the most abundant transporter in M Phi and DC. Blocking the ABCC1/MRP1 activity with the specific inhibitor MK571 resulted in a phenotypic change in DC but not in M Phi. Our data show that human blood monocytes and monocyte derived M Phi as well as DC express a specific profile of transporters involved in uptake and export of exogenous molecules like allergens or drugs, but also of endogenous substances in particular of inflammatory lipid mediators like leukotrienes and prostaglandins.


Assuntos
Células Dendríticas/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Diferenciação Celular , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
10.
PLoS One ; 11(1): e0146325, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26735690

RESUMO

INTRODUCTION: Interferon alpha (IFNα) is routinely used in the clinical practice for adjuvant systemic melanoma therapy. Understanding the molecular mechanism of IFNα effects and prediction of response in the IFNα therapy regime allows initiation and continuation of IFNα treatment for responder and exclusion of non-responder to avoid therapy inefficacy and side-effects. The transporter protein associated with antigen processing-1 (TAP1) is part of the MHC class I peptide-loading complex, and important for antigen presentation in tumor and antigen presenting cells. In the context of personalized medicine, we address this potential biomarker TAP1 as a target of IFNα signalling. RESULTS: We could show that IFNα upregulates TAP1 expression in peripheral blood mononuclear cells (PBMCs) of patients with malignant melanoma receiving adjuvant high-dose immunotherapy. IFNα also induced expression of TAP1 in mouse blood and tumor tissue and suppressed the formation of melanoma metastasis in an in vivo B16 tumor model. Besides its expression, TAP binding affinity and transport activity is induced by IFNα in human monocytic THP1 cells. Furthermore, our data revealed that IFNα clearly activates phosphorylation of STAT1 and STAT3 in THP1 and A375 melanoma cells. Inhibition of Janus kinases abrogates the IFNα-induced TAP1 expression. These results suggest that the JAK/STAT pathway is a crucial mediator for TAP1 expression elicited by IFNα treatment. CONCLUSION: We suppose that silencing of TAP1 expression provides tumor cells with a mechanism to escape cytotoxic T-lymphocyte recognition. The observed benefit of IFNα treatment could be mediated by the shown dual effect of TAP1 upregulation in antigen presenting cells on the one hand, and of TAP1 upregulation in 'silent' metastatic melanoma cells on the other hand. In conclusion, this work contributes to a better understanding of the mode of action of IFNα which is essential to identify markers to predict, assess and monitor therapeutic response of IFNα treatment in the future.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Interferon-alfa/fisiologia , Melanoma/imunologia , Neoplasias Cutâneas/imunologia , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Adulto , Idoso , Animais , Apresentação de Antígeno , Humanos , Imunoterapia , Interferon-alfa/farmacologia , Janus Quinases , Leucócitos Mononucleares , Masculino , Melanoma/tratamento farmacológico , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Transplante de Neoplasias , Fosforilação , Processamento de Proteína Pós-Traducional , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/tratamento farmacológico , Regulação para Cima
11.
J Invest Dermatol ; 124(1): 28-37, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15654950

RESUMO

Normal human epidermal keratinocytes (NHEK) and dermal fibroblasts express a cell-specific pattern of efflux transport proteins. Since regulatory mechanisms for these transporters in cells of the human skin were unknown, we analyzed the influence of inflammatory cytokines on the expression of multidrug resistance-associated proteins (MRP1, 3, 4, 5). Using real-time PCR, RT-PCR, cDNA microarray, immunostaining and efflux assays we demonstrated that stimulation of NHEK and primary human dermal fibroblasts with interleukin-6 (IL-6), in combination with its soluble alpha-receptor, or oncostatin M (OSM) for 24-72 h resulted in an upregulation of MRP expression and activity. Both cytokines induced a strong activation of signal transducer and activator of transcription (STAT)1 and STAT3 as well as the mitogen-activated protein kinase (MAPK) Erk1/2. OSM additionally activated proteinkinase B strongly. Using the MAPK/extracellular signal-regulated kinase kinase 1-specific inhibitor U0126 we could exclude a stimulatory effect of MAPK on MRP gene expression. Inhibition of the phosphatidylinositol 3-kinase, however, indicated that this pathway might be involved of OSM-mediated upregulation of MRP4 in dermal fibroblasts. Several inflammatory skin diseases show an enhanced expression of IL-6-type cytokines. Correspondingly, upregulation of MRP expression was found in lesional skin taken from patients with psoriasis and lichen planus.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Derme/citologia , Interleucina-6/farmacologia , Queratinócitos/metabolismo , Psoríase/fisiopatologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/fisiologia , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/fisiologia , Inibidores do Crescimento/farmacologia , Humanos , Imuno-Histoquímica , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Líquen Plano/fisiopatologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Oncostatina M , Peptídeos/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt , RNA Mensageiro/análise , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
12.
J Invest Dermatol ; 125(1): 143-53, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15982314

RESUMO

Retinoic acid exerts a variety of effects on gene transcription that regulate growth, differentiation, and inflammation in normal and neoplastic skin cells. Because there is a lack of information regarding the influence of metabolic transformation of retinoids on their pharmacologic effects in skin, we have analyzed the functional activity of all-trans-, 9-cis-, and 13-cis-retinoic acid and their 4-oxo-metabolites in normal human epidermal keratinocytes (NHEKs) and dermal fibroblasts using gene and protein expression profiling techniques, including cDNA microarrays, two-dimensional gel electrophoresis, and MALDI-MS. It was previously thought that the 4-oxo-metabolites of RA are inert catabolic end-products but our results indicate instead that they display strong and isomer-specific transcriptional regulatory activity in both NHEKs and dermal fibroblasts. Microarray and proteomic analyses identified a number of novel genes/gene products that are influenced by RA treatment of NHEKs or fibroblasts, including genes for enzymes catalyzing biotransformation of retinoids, corticosteroids, and antioxidants and structural and transport proteins known to be essential for homeostasis. Our results expand current knowledge regarding retinoic acid action within skin cells and the target tissue/cell regulatory systems that are important for modulating the physiological and pharmacological effects of this important class of dermatological drugs.


Assuntos
Fibroblastos/metabolismo , Queratinócitos/metabolismo , Tretinoína/metabolismo , Alitretinoína , Eletroforese em Gel Bidimensional , Fibroblastos/efeitos dos fármacos , Imunofluorescência , Regulação da Expressão Gênica , Humanos , Técnicas In Vitro , Isotretinoína/metabolismo , Queratinócitos/efeitos dos fármacos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tretinoína/análogos & derivados , Tretinoína/farmacologia
13.
Biomaterials ; 61: 316-26, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26026844

RESUMO

Surface topography impacts on cell growth and differentiation, but it is not trivial to generate defined surface structures and to assess the relevance of specific topographic parameters. In this study, we have systematically compared in vitro differentiation of mesenchymal stem cells (MSCs) on a variety of groove/ridge structures. Micro- and nano-patterns were generated in polyimide using reactive ion etching or multi beam laser interference, respectively. These structures affected cell spreading and orientation of human MSCs, which was also reflected in focal adhesions morphology and size. Time-lapse demonstrated directed migration parallel to the nano-patterns. Overall, surface patterns clearly enhanced differentiation of MSCs towards specific lineages: 15 µm ridges increased adipogenic differentiation whereas 2 µm ridges enhanced osteogenic differentiation. Notably, nano-patterns with a periodicity of 650 nm increased differentiation towards both osteogenic and adipogenic lineages. However, in absence of differentiation media surface structures did neither induce differentiation, nor lineage-specific gene expression changes. Furthermore, nanostructures did not affect the YAP/TAZ complex, which is activated by substrate stiffness. Our results provide further insight into how structuring of tailored biomaterials and implant interfaces - e.g. by multi beam laser interference in sub-micrometer scale - do not induce differentiation of MSCs per se, but support their directed differentiation.


Assuntos
Adipócitos/citologia , Adipogenia/fisiologia , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Osteogênese/fisiologia , Resinas Sintéticas/química , Adipócitos/fisiologia , Adesão Celular/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Tamanho Celular , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/fisiologia , Osteoblastos/fisiologia , Propriedades de Superfície
14.
Clin Epigenetics ; 7: 19, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25763115

RESUMO

BACKGROUND: Primary cells enter replicative senescence after a limited number of cell divisions. This process needs to be considered in cell culture experiments, and it is particularly important for regenerative medicine. Replicative senescence is associated with reproducible changes in DNA methylation (DNAm) at specific sites in the genome. The mechanism that drives senescence-associated DNAm changes remains unknown - it may involve stochastic DNAm drift due to imperfect maintenance of epigenetic marks or it is directly regulated at specific sites in the genome. RESULTS: In this study, we analyzed the reorganization of nuclear architecture and DNAm changes during long-term culture of human fibroblasts and mesenchymal stromal cells (MSCs). We demonstrate that telomeres shorten and shift towards the nuclear center at later passages. In addition, DNAm profiles, either analyzed by MethylCap-seq or by 450k IlluminaBeadChip technology, revealed consistent senescence-associated hypermethylation in regions associated with H3K27me3, H3K4me3, and H3K4me1 histone marks, whereas hypomethylation was associated with chromatin containing H3K9me3 and lamina-associated domains (LADs). DNA hypermethylation was significantly enriched in the vicinity of genes that are either up- or downregulated at later passages. Furthermore, specific transcription factor binding motifs (e.g. EGR1, TFAP2A, and ETS1) were significantly enriched in differentially methylated regions and in the promoters of differentially expressed genes. CONCLUSIONS: Senescence-associated DNA hypermethylation occurs at specific sites in the genome and reflects functional changes in the course of replicative senescence. These results indicate that tightly regulated epigenetic modifications during long-term culture contribute to changes in nuclear organization and gene expression.

15.
Stem Cell Reports ; 3(3): 414-22, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25241740

RESUMO

Standardization of mesenchymal stromal cells (MSCs) remains a major obstacle in regenerative medicine. Starting material and culture expansion affect cell preparations and render comparison between studies difficult. In contrast, induced pluripotent stem cells (iPSCs) assimilate toward a ground state and may therefore give rise to more standardized cell preparations. We reprogrammed MSCs into iPSCs, which were subsequently redifferentiated toward MSCs. These iPS-MSCs revealed similar morphology, immunophenotype, in vitro differentiation potential, and gene expression profiles as primary MSCs. However, iPS-MSCs were impaired in suppressing T cell proliferation. DNA methylation (DNAm) profiles of iPSCs maintained donor-specific characteristics, whereas tissue-specific, senescence-associated, and age-related DNAm patterns were erased during reprogramming. iPS-MSCs reacquired senescence-associated DNAm during culture expansion, but they remained rejuvenated with regard to age-related DNAm. Overall, iPS-MSCs are similar to MSCs, but they reveal incomplete reacquisition of immunomodulatory function and MSC-specific DNAm patterns-particularly of DNAm patterns associated with tissue type and aging.


Assuntos
Epigênese Genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular , Células Cultivadas , Metilação de DNA , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Mesenquimais/citologia , Transcriptoma
16.
PLoS One ; 9(4): e94353, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24728045

RESUMO

Several applications in tissue engineering require transplantation of cells embedded in appropriate biomaterial scaffolds. Such structures may consist of 3D non-woven fibrous materials whereas little is known about the impact of mesh size, pore architecture and fibre morphology on cellular behavior. In this study, we have developed polyvinylidene fluoride (PVDF) non-woven scaffolds with round, trilobal, or snowflake fibre cross section and different fibre crimp patterns (10, 16, or 28 needles per inch). Human mesenchymal stromal cells (MSCs) from adipose tissue were seeded in parallel on these scaffolds and their growth was compared. Initial cell adhesion during the seeding procedure was higher on non-wovens with round fibres than on those with snowflake or trilobal cross sections. All PVDF non-woven fabrics facilitated cell growth over a time course of 15 days. Interestingly, proliferation was significantly higher on non-wovens with round or trilobal fibres as compared to those with snowflake profile. Furthermore, proliferation increased in a wider, less dense network. Scanning electron microscopy (SEM) revealed that the MSCs aligned along the fibres and formed cellular layers spanning over the pores. 3D PVDF non-woven scaffolds support growth of MSCs, however fibre morphology and mesh size are relevant: proliferation is enhanced by round fibre cross sections and in rather wide-meshed scaffolds.


Assuntos
Células-Tronco Mesenquimais/citologia , Polivinil/farmacologia , Alicerces Teciduais/química , Adipogenia/efeitos dos fármacos , Materiais Biocompatíveis/farmacologia , Proliferação de Células/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/ultraestrutura , Porosidade
17.
Biomaterials ; 35(24): 6351-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24824582

RESUMO

Matrix elasticity guides differentiation of mesenchymal stem cells (MSCs) but it is unclear if these effects are only transient - while the cells reside on the substrate - or if they reflect persistent lineage commitment. In this study, MSCs were continuously culture-expanded in parallel either on tissue culture plastic (TCP) or on polydimethylsiloxane (PDMS) gels of different elasticity to compare impact on replicative senescence, in vitro differentiation, gene expression, and DNA methylation (DNAm) profiles. The maximal number of cumulative population doublings was not affected by matrix elasticity. Differentiation towards adipogenic and osteogenic lineage was increased on soft and rigid biomaterials, respectively - but this propensity was no more evident if cells were transferred to TCP. Global gene expression profiles and DNAm profiles revealed relatively few differences in MSCs cultured on soft or rigid matrices. Furthermore, only moderate DNAm changes were observed upon culture on very soft hydrogels of human platelet lysate. Our results support the notion that matrix elasticity influences cellular behavior while the cells reside on the substrate, but it does not have major impact on cell-intrinsic lineage determination, replicative senescence or DNAm patterns.


Assuntos
Senescência Celular , Metilação de DNA , Matriz Extracelular/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Plaquetas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Dimetilpolisiloxanos/farmacologia , Elasticidade/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/ultraestrutura
18.
PLoS One ; 8(10): e77656, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24147049

RESUMO

Transforming growth factor-beta 1 (TGF-ß1) stimulates a broad range of effects which are cell type dependent, and it has been suggested to induce cellular senescence. On the other hand, long-term culture of multipotent mesenchymal stromal cells (MSCs) has a major impact on their cellular physiology and therefore it is well conceivable that the molecular events triggered by TGF-ß1 differ considerably in cells of early and late passages. In this study, we analyzed the effect of TGF-ß1 on and during replicative senescence of MSCs. Stimulation with TGF-ß1 enhanced proliferation, induced a network like growth pattern and impaired adipogenic and osteogenic differentiation. TGF-ß1 did not induce premature senescence. However, due to increased proliferation rates the cells reached replicative senescence earlier than untreated controls. This was also evident, when we analyzed senescence-associated DNA-methylation changes. Gene expression profiles of MSCs differed considerably at relatively early (P 3-5) and later passages (P 10). Nonetheless, relative gene expression differences provoked by TGF-ß1 at individual time points or in a time course dependent manner (stimulation for 0, 1, 4 and 12 h) were very similar in MSCs of early and late passage. These results support the notion that TGF-ß1 has major impact on MSC function, but it does not induce senescence and has similar molecular effects during culture expansion.


Assuntos
Senescência Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Biologia Computacional , Metilação de DNA/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
19.
PLoS One ; 8(5): e65324, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23734247

RESUMO

Induced pluripotent stem cells (iPSCs) are usually clonally derived. The selection of fully reprogrammed cells generally involves picking of individual colonies with morphology similar to embryonic stem cells (ESCs). Given that fully reprogrammed cells are highly proliferative and escape from cellular senescence, it is conceivable that they outgrow non-pluripotent and partially reprogrammed cells during culture expansion without the need of clonal selection. In this study, we have reprogrammed human dermal fibroblasts (HDFs) with episomal plasmid vectors. Colony frequency was higher and size was larger when using murine embryonic fibroblasts (MEFs) as stromal support instead of HDFs or human mesenchymal stromal cells (MSCs). We have then compared iPSCs which were either clonally derived by manual selection of a single colony, or derived from bulk-cultures of all initial colonies. After few passages their morphology, expression of pluripotency markers, and gene expression profiles did not reveal any significant differences. Furthermore, clonally-derived and bulk-cultured iPSCs revealed similar in vitro differentiation potential towards the three germ layers. Therefore, manual selection of individual colonies does not appear to be necessary for the generation of iPSCs - this is of relevance for standardization and automation of cell culture procedures.


Assuntos
Proliferação de Células , Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Técnicas de Cultura de Células/métodos , Diferenciação Celular/genética , Células Cultivadas , Células Clonais/citologia , Células Clonais/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Fibroblastos/metabolismo , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Cariotipagem , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Microscopia de Fluorescência , Análise de Sequência com Séries de Oligonucleotídeos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Aging Cell ; 11(2): 366-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22221451

RESUMO

Replicative senescence has fundamental implications on cell morphology, proliferation, and differentiation potential. Here, we describe a simple method to track long-term culture based on continuous DNA-methylation changes at six specific CpG sites. This epigenetic senescence signature can be used as biomarker for various cell types to predict the state of cellular senescence with regard to the number of passages, population doublings, or days of in vitro culture.


Assuntos
Senescência Celular , Ilhas de CpG , Metilação de DNA , Células Cultivadas , Epigênese Genética , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa