RESUMO
Monitoring the extracellular environment for danger signals is a critical aspect of cellular survival. However, the danger signals released by dying bacteria and the mechanisms bacteria use for threat assessment remain largely unexplored. Here, we show that lysis of Pseudomonas aeruginosa cells releases polyamines that are subsequently taken up by surviving cells via a mechanism that relies on Gac/Rsm signaling. While intracellular polyamines spike in surviving cells, the duration of this spike varies according to the infection status of the cell. In bacteriophage-infected cells, intracellular polyamines are maintained at high levels, which inhibits replication of the bacteriophage genome. Many bacteriophages package linear DNA genomes and linear DNA is sufficient to trigger intracellular polyamine accumulation, suggesting that linear DNA is sensed as a second danger signal. Collectively, these results demonstrate how polyamines released by dying cells together with linear DNA allow P. aeruginosa to make threat assessments of cellular injury.
Assuntos
Bacteriófagos , Poliaminas , Bacteriófagos/genética , Bactérias , Pseudomonas aeruginosa , DNARESUMO
Schizophrenia is characterized by substantial alterations in brain function, and previous studies suggest insulin signaling pathways, particularly involving AKT, are implicated in the pathophysiology of the disorder. This study demonstrates elevated mRNA expression of AKT1-3 in neurons from schizophrenia subjects, contrary to unchanged or diminished total AKT protein expression reported in previous postmortem studies, suggesting a potential decoupling of transcript and protein levels. Sex-specific differential AKT activity was observed, indicating divergent roles in males and females with schizophrenia. Alongside AKT, upregulation of PDPK1, a critical component of the insulin signaling pathway, and several protein phosphatases known to regulate AKT were detected. Moreover, enhanced expression of the transcription factor FOXO1, a regulator of glucose metabolism, hints at possible compensatory mechanisms related to insulin signaling dysregulation. Findings were largely independent of antipsychotic medication use, suggesting inherent alterations in schizophrenia. These results highlight the significance of AKT and related signaling pathways in schizophrenia, proposing that these changes might represent a compensatory response to a primary defect of canonical insulin signaling pathways. This research underscores the need for a detailed understanding of these signaling pathways for the development of effective therapeutic strategies.
RESUMO
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that commonly causes medical hardware, wound, and respiratory infections. Temperate filamentous Pf phages that infect P. aeruginosa impact numerous virulence phenotypes. Most work on Pf phages has focused on Pf4 and its host P. aeruginosa PAO1. Expanding from Pf4 and PAO1, this study explores diverse Pf phages infecting P. aeruginosa clinical isolates. We describe a simple technique targeting the Pf lysogeny maintenance gene, pflM (PA0718), that enables the effective elimination of Pf prophages from diverse P. aeruginosa hosts. The pflM gene shows diversity among different Pf phage isolates; however, all examined pflM alleles encode the DUF5447 domain. We demonstrate that pflM deletion results in prophage excision but not replication, leading to total prophage loss, indicating a role for lysis/lysogeny decisions for the DUF5447 domain. This study also assesses the effects different Pf phages have on host quorum sensing, biofilm formation, pigment production, and virulence against the bacterivorous nematode Caenorhabditis elegans. We find that Pf phages have strain-specific impacts on quorum sensing and biofilm formation, but nearly all suppress pigment production and increase C. elegans avoidance behavior. Collectively, this research not only introduces a valuable tool for Pf prophage elimination from diverse P. aeruginosa isolates but also advances our understanding of the complex relationship between P. aeruginosa and filamentous Pf phages.IMPORTANCEPseudomonas aeruginosa is an opportunistic bacterial pathogen that is frequently infected by filamentous Pf phages (viruses) that integrate into its chromosome, affecting behavior. Although prior work has focused on Pf4 and PAO1, this study investigates diverse Pf in clinical isolates. A simple method targeting the deletion of the Pf lysogeny maintenance gene pflM (PA0718) effectively eliminates Pf prophages from clinical isolates. The research evaluates the impact Pf prophages have on bacterial quorum sensing, biofilm formation, and virulence phenotypes. This work introduces a valuable tool to eliminate Pf prophages from clinical isolates and advances our understanding of P. aeruginosa and filamentous Pf phage interactions.
Assuntos
Prófagos , Pseudomonas aeruginosa , Percepção de Quorum , Biofilmes/crescimento & desenvolvimento , Caenorhabditis elegans/microbiologia , Caenorhabditis elegans/virologia , Lisogenia , Prófagos/genética , Prófagos/fisiologia , Pseudomonas aeruginosa/virologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/fisiologia , Infecções por Pseudomonas/microbiologia , Fagos de Pseudomonas/genética , Fagos de Pseudomonas/fisiologia , VirulênciaRESUMO
Due to their oftentimes ambiguous nature, phosphopeptide positional isomers can present challenges in bottom-up mass spectrometry-based workflows as search engine scores alone are often not enough to confidently distinguish them. Additional scoring algorithms can remedy this by providing confidence metrics in addition to these search results, reducing ambiguity. Here we describe challenges to interpreting phosphoproteomics data and review several different approaches to determine sites of phosphorylation for both data-dependent and data-independent acquisition-based workflows. Finally, we discuss open questions regarding neutral losses, gas-phase rearrangement, and false localization rate estimation experienced by both types of acquisition workflows and best practices for managing ambiguity in phosphosite determination.
Assuntos
Algoritmos , Ferramenta de Busca , Fosforilação , Espectrometria de Massas/métodos , Fosfopeptídeos/metabolismoRESUMO
BACKGROUND: Physician associates (PA) form part of the policy-driven response to increased primary care demand and a general practitioner (GP) recruitment and retention crisis. However, they are novel to the primary care workforce and have limitations, for example, they cannot prescribe. The novel 1 year Staffordshire PA Internship (SPAI) scheme, introduced in 2017, was established to support the integration of PAs into primary care. PA interns concurrently worked in primary and secondary care posts, with protected weekly primary care focussed education sessions. This evaluation established the acceptability of PA interns within primary care. METHODS: All ten PAs from the first two SPAI cohorts, the nine host practices (supervising GPs and practice managers) and host practice patients were invited to participate in the evaluation. A conceptual framework for implementing interventions in primary care informed data collection and analysis. Data were gathered at three time points over the internship from practices, through discussions with the supervising GP and/or practice manager, and from the PAs via discussion groups. To enrich discussion data, PA and practices were sent brief surveys requesting information on PA/practice characteristics and PA primary care roles. Patient acceptability data were collected by the host practices. Participation at every stage was optional. RESULTS: By evaluation end, eight PAs had completed the internship. Seven PAs and six practices provided data at every time point. Five practices provided patient acceptability data. Overall PA interns were acceptable to practices and patients, however ambiguity about the PA role and how best to communicate and operationalise PA roles was revealed. An expectation-preparedness gap resulted in PAs needing high levels of supervision early within the internship. SPAI facilitated closure of the expectation-preparedness gap and its funding arrangements made the high supervision requirements more acceptable to practices. CONCLUSIONS: The test-of-concept SPAI successfully integrated new PAs into primary care. However, the identified challenges risk undermining PAs roles in primary care before they have attained their full potential. Nationally, workforce leaders should develop approaches to support new PAs into primary care, including commitments to longer-term, sustainable, cohesive and appropriately funded schemes, including structured and standardised education and supervision.
Assuntos
Clínicos Gerais , Internato e Residência , Assistentes Médicos , Humanos , Atenção Primária à Saúde , Pesquisadores , Recursos HumanosRESUMO
Legionella pneumophila grows within membrane-bound vacuoles in phylogenetically diverse hosts. Intracellular growth requires the function of the Icm/Dot type-IVb secretion system, which translocates more than 300 proteins into host cells. A screen was performed to identify L. pneumophila proteins that stimulate MAPK activation, using Icm/Dot translocated proteins ectopically expressed in mammalian cells. In parallel, a second screen was performed to identify L. pneumophila proteins expressed in yeast that cause growth inhibition in MAPK pathway-stimulatory high osmolarity medium. LegA7 was shared in both screens, a protein predicted to be a member of the bacterial cysteine protease family that has five carboxyl-terminal ankyrin repeats. Three conserved residues in the predicted catalytic triad of LegA7 were mutated. These mutations abolished the ability of LegA7 to inhibit yeast growth. To identify other residues important for LegA7 function, a generalizable selection strategy in yeast was devised to isolate mutants that have lost function and no longer cause growth inhibition on high osmolarity medium. Mutations were isolated in the two carboxyl-terminal ankyrin repeats, as well as an inter-domain region located between the cysteine protease domain and the ankyrin repeats. These mutations were predicted by AlphaFold modeling to localize to the face opposite from the catalytic site, arguing that they interfere with the positive regulation of the catalytic activity. Based on our data, we present a model in which LegA7 harbors a cysteine protease domain with an inter-domain and two carboxyl-terminal ankyrin repeat regions that modulate the function of the catalytic domain.
RESUMO
Legionella pneumophila grows within membrane-bound vacuoles in phylogenetically diverse hosts. Intracellular growth requires the function of the Icm/Dot type-IVb secretion system, which translocates more than 300 proteins into host cells. A screen was performed to identify L. pneumophila proteins that stimulate mitogen-activated protein kinase (MAPK) activation, using Icm/Dot translocated proteins ectopically expressed in mammalian cells. In parallel, a second screen was performed to identify L. pneumophila proteins expressed in yeast that cause growth inhibition in MAPK pathway-stimulatory high-osmolarity medium. LegA7 was shared in both screens, a protein predicted to be a member of the bacterial cysteine protease family that has five carboxyl-terminal ankyrin repeats. Three conserved residues in the predicted catalytic triad of LegA7 were mutated. These mutations abolished the ability of LegA7 to inhibit yeast growth. To identify other residues important for LegA7 function, a generalizable selection strategy in yeast was devised to isolate mutants that have lost function and no longer cause growth inhibition on a high-osmolarity medium. Mutations were isolated in the two carboxyl-terminal ankyrin repeats, as well as an inter-domain region located between the cysteine protease domain and the ankyrin repeats. These mutations were predicted by AlphaFold modeling to localize to the face opposite from the catalytic site, arguing that they interfere with the positive regulation of the catalytic activity. Based on our data, we present a model in which LegA7 harbors a cysteine protease domain with an inter-domain and two carboxyl-terminal ankyrin repeat regions that modulate the function of the catalytic domain. IMPORTANCE: Legionella pneumophila grows in a membrane-bound compartment in macrophages during disease. Construction of the compartment requires a dedicated secretion system that translocates virulence proteins into host cells. One of these proteins, LegA7, is shown to activate a stress response pathway in host cells called the mitogen-activated protein kinase (MAPK) pathway. The effects on the mammalian MAPK pathway were reconstructed in yeast, allowing the development of a strategy to identify the role of individual domains of LegA7. A domain similar to cysteine proteases is demonstrated to be critical for impinging on the MAPK pathway, and the catalytic activity of this domain is required for targeting this path. In addition, a conserved series of repeats, called ankyrin repeats, controls this activity. Data are provided that argue the interaction of the ankyrin repeats with unknown targets probably results in activation of the cysteine protease domain.
Assuntos
Proteínas de Bactérias , Cisteína Proteases , Legionella pneumophila , Legionella pneumophila/genética , Legionella pneumophila/enzimologia , Legionella pneumophila/metabolismo , Legionella pneumophila/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Cisteína Proteases/genética , Cisteína Proteases/metabolismo , Estresse Fisiológico , Humanos , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimologia , Domínio CatalíticoRESUMO
Schizophrenia is characterized by substantial alterations in brain function, and previous studies suggest insulin signaling pathways, particularly involving AKT, are implicated in the pathophysiology of the disorder. This study demonstrates elevated mRNA expression of AKT1-3 in neurons from schizophrenia subjects, contrary to unchanged or diminished total AKT protein expression reported in previous postmortem studies, suggesting a potential decoupling of transcript and protein levels. Sex-specific differential AKT activity was observed, indicating divergent roles in males and females with schizophrenia. Alongside AKT, upregulation of PDPK1, a critical component of the insulin signaling pathway, and several protein phosphatases known to regulate AKT were detected. Moreover, enhanced expression of the transcription factor FOXO1, a regulator of glucose metabolism, hints at possible compensatory mechanisms related to insulin signaling dysregulation. Findings were largely independent of antipsychotic medication use, suggesting inherent alterations in schizophrenia. These results highlight the significance of AKT and related signaling pathways in schizophrenia, proposing that these changes might represent a compensatory response to a primary defect of conical insulin signaling pathways. This research underscores the need for a detailed understanding of these signaling pathways for the development of effective therapeutic strategies.
RESUMO
BACKGROUND: Fretting corrosion at modular junctions contributes to arthroplasty failure. Currently, no evidence-based guidelines are available regarding the acceptable level of trunnion corrosion that can occur in vivo. We aimed to examine the relationship between trunnion corrosion and risk of re-revision to assist surgeons with intraoperative decision making. METHOD: Grading by 3 independent examiners of revised and re-revised head components was performed using a modified Goldberg corrosion scale. Samples were separated into low-grade (LG) and high-grade (HG) corrosion. Mechanical testing determined the relationship between corrosion severity and pull-off strength at the head-stem junction. RESULTS: 529 retrieved femoral heads were analysed. A positive association was detected between males and HG corrosion (OR 2.07; 95% CI, 1.45-2.94; p < 0.001). No difference between the survivorship of LG and HG heads was detected (p-value = 0.247). In the re-revised sample, the first implant had a time in situ that was on average 7.97 years longer (95% CI, 5.4-10.6) than that of the subsequent re-revised femoral head. Severe corrosion on the first head was associated with a 37.5 (95% CI, 4.00-1944) fold increase of HG on the subsequent head (p < 0.001). Femoral disassembly force had a positive correlation with stem taper corrosion grade (p = 0.001). CONCLUSIONS: A well-fixed stem with corrosion may remain in situ.
Assuntos
Artroplastia de Quadril , Prótese de Quadril , Masculino , Humanos , Cabeça do Fêmur/cirurgia , Artroplastia de Quadril/efeitos adversos , Prótese de Quadril/efeitos adversos , Falha de Prótese , Desenho de Prótese , CorrosãoRESUMO
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that commonly causes medical hardware, wound, and respiratory infections. Temperate filamentous Pf phages that infect P. aeruginosa impact numerous bacterial virulence phenotypes. Most work on Pf phages has focused on strain Pf4 and its host P. aeruginosa PAO1. Expanding from Pf4 and PAO1, this study explores diverse Pf strains infecting P. aeruginosa clinical isolates. We describe a simple technique targeting the Pf lysogeny maintenance gene, pflM (PA0718), that enables the effective elimination of Pf prophages from diverse P. aeruginosa hosts. This study also assesses the effects different Pf phages have on host quorum sensing, biofilm formation, virulence factor production, and virulence. Collectively, this research not only introduces a valuable tool for Pf prophage elimination from diverse P. aeruginosa isolates, but also advances our understanding of the complex relationship between P. aeruginosa and filamentous Pf phages.
RESUMO
Biological regulatory networks are dynamic, intertwined, and complex systems making them challenging to study. While quantitative measurements of transcripts and proteins are key to investigate the state of a biological system, they do not inform the "active" state of regulatory networks. In consideration of that fact, "functional" proteomics assessments are needed to decipher active regulatory processes. Phosphorylation, a key post-translation modification, is a reversible regulatory mechanism that controls the functional state of proteins. Recent advancements of high-throughput protein kinase activity profiling platforms allow for a broad assessment of protein kinase networks in complex biological systems. In conjunction with sophisticated computational modeling techniques, these profiling platforms provide datasets that inform the active state of regulatory systems in disease models and highlight potential drug targets. Taken together, system-wide profiling of protein kinase activity has become a critical component of modern molecular biology research and presents a promising avenue for drug discovery.