Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Biotechnol Bioeng ; 120(9): 2658-2671, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37058415

RESUMO

Vaccine development against dengue virus is challenging because of the antibody-dependent enhancement of infection (ADE), which causes severe disease. Consecutive infections by Zika (ZIKV) and/or dengue viruses (DENV), or vaccination can predispose to ADE. Current vaccines and vaccine candidates contain the complete envelope viral protein, with epitopes that can raise antibodies causing ADE. We used the envelope dimer epitope (EDE), which induces neutralizing antibodies that do not elicit ADE, to design a vaccine against both flaviviruses. However, EDE is a discontinuous quaternary epitope that cannot be isolated from the E protein without other epitopes. Utilizing phage display, we selected three peptides that mimic the EDE. Free mimotopes were disordered and did not elicit an immune response. After their display on adeno-associated virus (AAV) capsids (VLP), they recovered their structure and were recognized by an EDE-specific antibody. Characterization by cryo-EM and enzyme-linked immunosorbent assay confirmed the correct display of a mimotope on the surface of the AAV VLP and its recognition by the specific antibody. Immunization with the AAV VLP displaying one of the mimotopes induced antibodies that recognized ZIKV and DENV. This work provides the basis for developing a Zika and dengue virus vaccine candidate that will not induce ADE.


Assuntos
Vírus da Dengue , Dengue , Vacinas , Infecção por Zika virus , Zika virus , Humanos , Infecção por Zika virus/prevenção & controle , Vírus da Dengue/química , Dengue/prevenção & controle , Anticorpos Antivirais , Proteínas do Envelope Viral/química , Anticorpos Neutralizantes , Epitopos , Reações Cruzadas
2.
Int J Mol Sci ; 23(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35563384

RESUMO

Neutrophils play a crucial role in eliminating bacteria that invade the human body; however, cathepsin G can induce biofilm formation in a non-biofilm-forming Staphylococcus epidermidis 1457 strain, suggesting that neutrophil proteases may be involved in biofilm formation. Cathepsin G, cathepsin B, proteinase-3, and metalloproteinase-9 (MMP-9) from neutrophils were tested on the biofilm induction in commensal (skin isolated) and clinical non-biofilm-forming S. epidermidis isolates. From 81 isolates, 53 (74%) were aap+, icaA−, icaD− genotype, and without the capacity of biofilm formation under conditions of 1% glucose, 4% ethanol or 4% NaCl, but these 53 non-biofilm-forming isolates induced biofilm by the use of different neutrophil proteases. Of these, 62.3% induced biofilm with proteinase-3, 15% with cathepsin G, 10% with cathepsin B and 5% with MMP -9, where most of the protease-induced biofilm isolates were commensal strains (skin). In the biofilm formation kinetics analysis, the addition of phenylmethylsulfonyl fluoride (PMSF; a proteinase-3 inhibitor) showed that proteinase-3 participates in the cell aggregation stage of biofilm formation. A biofilm induced with proteinase-3 and DNAse-treated significantly reduced biofilm formation at an early time (initial adhesion stage of biofilm formation) compared to untreated proteinase-3-induced biofilm (p < 0.05). A catheter inoculated with a commensal (skin) non-biofilm-forming S. epidermidis isolate treated with proteinase-3 and another one without the enzyme were inserted into the back of a mouse. After 7 days of incubation period, the catheters were recovered and the number of grown bacteria was quantified, finding a higher amount of adhered proteinase-3-treated bacteria in the catheter than non-proteinase-3-treated bacteria (p < 0.05). Commensal non-biofilm-forming S. epidermidis in the presence of neutrophil cells significantly induced the biofilm formation when multiplicity of infection (MOI) 1:0.01 (neutrophil:bacteria) was used, but the addition of a cocktail of protease inhibitors impeded biofilm formation. A neutrophil:bacteria assay did not induce neutrophil extracellular traps (NETs). Our results suggest that neutrophils, in the presence of commensal non-biofilm-forming S. epidermidis, do not generate NETs formation. The effect of neutrophils is the production of proteases, and proteinase-3 releases bacterial DNA at the initial adhesion, favoring cell aggregation and subsequently leading to biofilm formation.


Assuntos
Neutrófilos , Peptídeo Hidrolases , Infecções Estafilocócicas , Staphylococcus epidermidis , Animais , Biofilmes , Catepsina B , Catepsina G , Metaloproteases , Camundongos , Mieloblastina , Neutrófilos/metabolismo , Peptídeo Hidrolases/metabolismo , Infecções Estafilocócicas/microbiologia
3.
Microb Pathog ; 132: 166-177, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31054870

RESUMO

The macrophage innate immune response is outlined through recognition of the components of Mycobacterium tuberculosis. DNA of M. tuberculosis (MtbDNA) is recognized by macrophages, but the implications of this recognition are poorly characterized. Stimulation of murine macrophages with MtbDNA induces autophagy, a process that promotes elimination of intracellular pathogens. However, it remains unknown whether this or other phenomena also occur in human cells. In this work, we studied the innate response profiles of human macrophages after stimulation with DNA from virulent M. tuberculosis H37Rv. Human monocyte-derived macrophages were polarized into M1 and M2 phenotypes and stimulated with MtbDNA. The plasma membrane markers of the phenotype, production of TNF-α, and induction of autophagy were evaluated. Our results indicate that MtbDNA induced phenotypical changes, the significant production of TNF-α, and autophagy confirmed by the augmented expression of immunity related GTPase M (IRGM) and autophagy related ATG16L1 genes in M1 macrophages, whereas M2 macrophages exhibited limited responses. In addition, MtbDNA activation was TLR-9-dependent. Although TLR-9 expression was similar between M1 and M2 macrophages, only M1 macrophages were fully responsive to MtbDNA. In conclusion, MtbDNA recognition enhanced the antimicrobial mechanisms of M1 macrophages.


Assuntos
Autofagia , DNA Bacteriano/isolamento & purificação , Macrófagos/metabolismo , Mycobacterium tuberculosis/genética , Fator de Necrose Tumoral alfa/metabolismo , DNA Bacteriano/genética , Humanos , Imunidade Inata , Monócitos , Mycobacterium tuberculosis/metabolismo , Fenótipo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
4.
Cell Immunol ; 315: 45-55, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28258715

RESUMO

Macrophages are important in host defense and can differentiate into functionally distinct subsets named classically (M1) or alternatively (M2) activated. In several inflammatory disorders, macrophages become tolerized to prevent deleterious consequences. This tolerization reduces the ability of macrophages to respond to bacterial components (e.g., LPS) maintaining a low level of inflammation but compromising the ability of macrophages to mount an effective immune response during subsequent pathogen encounters. In this study, we aimed to reactivate human monocyte-derived macrophages chronically exposed to LPS by re-stimulation with muramyl dipeptide (MDP). We observed an undefined profile of cell surface marker expression during endotoxin tolerance and absence of TNFα production. Stimulating macrophages chronically exposed to LPS with LPS+MDP restored TNFα, production together with an increased production of IL1, IL6, IFNγ, IL4, IL5 and IL10. These results suggest that macrophages chronically exposed to LPS possess a mixed M1-M2 phenotype with sufficient antimicrobial and homeostatic potential.


Assuntos
Acetilmuramil-Alanil-Isoglutamina/farmacologia , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Células Cultivadas , Citocinas/biossíntese , Citocinas/genética , Sinergismo Farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunofenotipagem , Macrófagos/classificação , Macrófagos/metabolismo , Macrófagos/microbiologia , Monócitos/citologia , Mycobacterium smegmatis/crescimento & desenvolvimento , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética
5.
Am J Respir Cell Mol Biol ; 55(6): 837-847, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27468130

RESUMO

New approaches for improving tuberculosis (TB) control using adjunct host-directed cellular and repurposed drug therapies are needed. Autophagy plays a crucial role in the response to TB, and a variety of autophagy-inducing drugs that are currently available for various medical conditions may serve as an adjunct treatment in pulmonary TB. Here, we evaluated the potential of loperamide, carbamazepine, valproic acid, verapamil, and rapamycin to enhance the antimicrobial immune response to Mycobacterium tuberculosis (Mtb). Human monocyte-derived macrophages (MDMs) and murine alveolar cells (MACs) were infected with Mtb and treated with loperamide, carbamazepine, valproic acid, verapamil, and rapamycin in vitro. Balb/c mice were intraperitoneally administered loperamide, valproic acid, and verapamil, and MACs were infected in vitro with Mtb. The induction of autophagy, the containment of Mtb within autophagosomes and the intracellular Mtb burden were determined. Autophagy was induced by all of the drugs in human and mouse macrophages, and loperamide significantly increased the colocalization of microtubule-associated protein 1 light chain 3 with Mtb in MDMs. Carbamazepine, loperamide, and valproic acid induced microtubule-associated protein 1 light chain 3 and autophagy related 16- like protein 1 gene expression in MDMs and in MACs. Loperamide also induced a reduction in TNF-α production. Loperamide and verapamil induced autophagy, which was associated with a significant reduction in the intracellular growth of Mtb in MACs and alveolar macrophages. The intraperitoneal administration of loperamide and valproic acid induced autophagy in freshly isolated MACs. The antimycobacterial activity in MACs was higher after loperamide treatment and was associated with the degradation of p62. In conclusion, loperamide shows potential as an adjunctive therapy for the treatment of TB.


Assuntos
Espaço Intracelular/microbiologia , Loperamida/farmacologia , Pulmão/patologia , Macrófagos/microbiologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Carbamazepina/farmacologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/efeitos dos fármacos , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/microbiologia , Alvéolos Pulmonares/patologia , Ácido Valproico/farmacologia , Virulência/efeitos dos fármacos
6.
BMC Pulm Med ; 14: 152, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25253572

RESUMO

BACKGROUND: Nucleotide-binding oligomerizing domain-1 (NOD1) is a cytoplasmic receptor involved in recognizing bacterial peptidoglycan fragments that localize to the cytosol. NOD1 activation triggers inflammation, antimicrobial mechanisms and autophagy in both epithelial cells and murine macrophages. NOD1 mediates intracellular pathogen clearance in the lungs of mice; however, little is known about NOD1's role in human alveolar macrophages (AMs) or its involvement in Mycobacterium tuberculosis (Mtb) infection. METHODS: AMs, monocytes (MNs), and monocyte-derived macrophages (MDMs) from healthy subjects were assayed for NOD1 expression. Cells were stimulated with the NOD1 ligand Tri-DAP and cytokine production and autophagy were assessed. Cells were infected with Mtb and treated with Tri-DAP post-infection. CFUs counting determined growth control, and autophagy protein recruitment to pathogen localization sites was analyzed by immunoelectron microscopy. RESULTS: NOD1 was expressed in AMs, MDMs and to a lesser extent MNs. Tri-DAP stimulation induced NOD1 up-regulation and a significant production of IL1ß, IL6, IL8, and TNFα in AMs and MDMs; however, the level of NOD1-dependent response in MNs was limited. Autophagy activity determined by expression of proteins Atg9, LC3, IRGM and p62 degradation was induced in a NOD1-dependent manner in AMs and MDMs but not in MNs. Infected AMs could be activated by stimulation with Tri-DAP to control the intracellular growth of Mtb. In addition, recruitment of NOD1 and the autophagy proteins IRGM and LC3 to the Mtb localization site was observed in infected AMs after treatment with Tri-DAP. CONCLUSIONS: NOD1 is involved in AM and MDM innate responses, which include proinflammatory cytokines and autophagy, with potential implications in the killing of Mtb in humans.


Assuntos
Autofagia , Citocinas/metabolismo , Imunidade Inata , Macrófagos Alveolares/metabolismo , Monócitos/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Autofagia/efeitos dos fármacos , Células Cultivadas , Contagem de Colônia Microbiana , Ácido Diaminopimélico/análogos & derivados , Ácido Diaminopimélico/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Humanos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/microbiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/microbiologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Oligopeptídeos/farmacologia , Tuberculose Pulmonar/metabolismo , Regulação para Cima/efeitos dos fármacos
7.
Methods Mol Biol ; 2829: 227-235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951338

RESUMO

Virus-like particles (VLPs) of the adeno-associated virus (AAV) can be produced using the baculovirus expression vector system. Insertion of small peptides on the surface of the AAV or AAV VLPs has been used to redirect the AAV to different target tissues and for vaccine development. Usually, the VLPs self-assemble intracellularly, and an extraction step must be performed before purification. Here, we describe the method we have used to extract AAV VLPs from insect cells successfully with peptide insertions on their surface.


Assuntos
Dependovirus , Peptídeos , Dependovirus/genética , Animais , Peptídeos/química , Peptídeos/genética , Vetores Genéticos/genética , Vírion/genética , Baculoviridae/genética , Células Sf9 , Humanos , Linhagem Celular , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/isolamento & purificação
8.
Biomolecules ; 14(4)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38672491

RESUMO

Bactericidal permeability-increasing protein (BPI) is a multifunctional cationic protein produced by neutrophils, eosinophils, fibroblasts, and macrophages with antibacterial anti-inflammatory properties. In the context of Gram-negative infection, BPI kills bacteria, neutralizes the endotoxic activity of lipopolysaccharides (LPSs), and, thus, avoids immune hyperactivation. Interestingly, BPI increases in patients with Gram-positive meningitis, interacts with lipopeptides and lipoteichoic acids of Gram-positive bacteria, and significantly enhances the immune response in peripheral blood mononuclear cells. We evaluated the antimycobacterial and immunoregulatory properties of BPI in human macrophages infected with Mycobacterium tuberculosis. Our results showed that recombinant BPI entered macrophages, significantly reduced the intracellular growth of M. tuberculosis, and inhibited the production of the proinflammatory cytokine tumor necrosis factor-alpha (TNF-α). Furthermore, BPI decreased bacterial growth directly in vitro. These data suggest that BPI has direct and indirect bactericidal effects inhibiting bacterial growth and potentiating the immune response in human macrophages and support that this new protein's broad-spectrum antibacterial activity has the potential for fighting tuberculosis.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Proteínas Sanguíneas , Macrófagos , Mycobacterium tuberculosis , Fator de Necrose Tumoral alfa , Humanos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/efeitos dos fármacos , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/farmacologia , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Tuberculose/microbiologia , Tuberculose/imunologia , Tuberculose/tratamento farmacológico
9.
Eur J Immunol ; 42(4): 880-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22531915

RESUMO

A role for the nucleotide-binding oligomerization domain 2 (NOD2) receptor in pulmonary innate immune responses has recently been explored. In the present study, we investigated the role that NOD2 plays in human alveolar macrophage innate responses and determined its involvement in the response to infection with virulent Mycobacterium tuberculosis. Our results showed that NOD2 was expressed in human alveolar macrophages, and significant amounts of IL-1ß, IL-6, and TNF-α were produced upon ligand recognition with muramyldipeptide (MDP). NOD2 ligation induced the transcription and protein expression of the antimicrobial peptide LL37 and the autophagy enzyme IRGM in alveolar macrophages, demonstrating a novel function for this receptor in these cells. MDP treatment of alveolar macrophages improved the intracellular growth control of virulent M. tuberculosis; this was associated with a significant release of TNF-α and IL-6 and overexpression of bactericidal LL37. In addition, the autophagy proteins IRGM, LC3 and ATG16L1 were recruited to the bacteria-containing autophagosome after treatment with MDP. In conclusion, our results suggest that NOD2 can modulate the innate immune response of alveolar macrophages and play a role in the initial control of respiratory M. tuberculosis infections.


Assuntos
Imunidade Inata , Macrófagos Alveolares/imunologia , Mycobacterium tuberculosis/imunologia , Proteína Adaptadora de Sinalização NOD2/imunologia , Tuberculose Pulmonar/imunologia , Peptídeos Catiônicos Antimicrobianos , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/biossíntese , Proteínas de Transporte/imunologia , Catelicidinas/biossíntese , Catelicidinas/imunologia , Citocinas/biossíntese , Citocinas/imunologia , Feminino , Proteínas de Ligação ao GTP/biossíntese , Proteínas de Ligação ao GTP/imunologia , Regulação da Expressão Gênica/imunologia , Humanos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiologia , Macrófagos Alveolares/ultraestrutura , Masculino , Mycobacterium tuberculosis/ultraestrutura , Proteína Adaptadora de Sinalização NOD2/biossíntese , Fagossomos/imunologia , Fagossomos/metabolismo , Fagossomos/microbiologia , Tuberculose Pulmonar/metabolismo
10.
BMC Infect Dis ; 13: 544, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24238117

RESUMO

BACKGROUND: The efficacy of the H1N1 influenza vaccine relies on the induction of both humoral and cellular responses. This study evaluated the humoral and cellular responses to a monovalent non-adjuvanted pandemic influenza A/H1N1 vaccine in occupationally exposed subjects who were previously vaccinated with a seasonal vaccine. METHODS: Sixty healthy workers from a respiratory disease hospital were recruited. Sera and peripheral blood mononuclear cells (PBMCs) were obtained prior to and 1 month after vaccination with a non-adjuvanted monovalent 2009 H1N1 vaccine (Influenza A (H1N1) 2009 Monovalent Vaccine Panenza, Sanofi Pasteur). Antibody titers against the pandemic A/H1N1 influenza virus were measured via hemagglutination inhibition (HI) and microneutralization assays. Antibodies against the seasonal HA1 were assessed by ELISA. The frequency of IFN-γ-producing cells as well as CD4+ and CD8+ T cell proliferation specific to the pandemic virus A/H1N peptides, seasonal H1N1 peptides and seasonal H3N2 peptides were assessed using ELISPOT and flow cytometry. RESULTS: At baseline, 6.7% of the subjects had seroprotective antibody titers. The seroconversion rate was 48.3%, and the seroprotection rate was 66.7%. The geometric mean titers (GMTs) were significantly increased (from 6.8 to 64.9, p < 0.05). Forty-nine percent of the subjects had basal levels of specific IFN-γ-producing T cells to the pandemic A/H1N1 peptides that were unchanged post-vaccination. CD4+ T cell proliferation in response to specific pandemic A/H1N1 virus peptides was also unchanged; in contrast, the antigen-specific proliferation of CD8+ T cells significantly increased post-vaccination. CONCLUSION: Our results indicate that a cellular immune response that is cross-reactive to pandemic influenza antigens may be present in populations exposed to the circulating seasonal influenza virus prior to pandemic or seasonal vaccination. Additionally, we found that the pandemic vaccine induced a significant increase in CD8+ T cell proliferation.


Assuntos
Anticorpos Antivirais/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Adulto , Anticorpos Antivirais/sangue , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Pessoal de Saúde , Humanos , Influenza Humana/sangue , Influenza Humana/prevenção & controle , Ativação Linfocitária , Masculino
11.
Tuberculosis (Edinb) ; 143: 102418, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37813014

RESUMO

Pulmonary tuberculosis (TB) inflammation is an underestimated disease complication which anti-inflammatory drugs may alleviate. This study explored the potential use of the COX-2 inhibitors acetylsalicylic acid (ASA) and celecoxib in 12 TB patients and 12 healthy controls using a whole-blood ex vivo model where TNFα, PGE2, and LTB4 plasma levels were quantitated by ELISA; we also measured COX-2, 5-LOX, 12-LOX, and 15-LOX gene expression. We observed a significant TNFα production in response to stimulation with LPS or M. tuberculosis (Mtb). Celecoxib, but not ASA, reduced TNFα and PGE2 production, while increasing LTB4 in patients after infection with Mtb. Gene expression of COX-2 and 5-LOX was higher in controls, while 12-LOX was significantly higher in patients. 15-LOX expression was similar in both groups. We concluded that COX-2 inhibitors downregulate inflammation after Mtb infection, and our methodology offers a straightforward time-efficient approach for evaluating different drugs in this context. Further research is warranted to elucidate the underlying mechanisms and assess the potential clinical benefit.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Dinoprostona , Imunidade , Inflamação/metabolismo , Leucotrieno B4/metabolismo , Mycobacterium tuberculosis/metabolismo , Tuberculose/tratamento farmacológico , Fator de Necrose Tumoral alfa
12.
Front Immunol ; 14: 1241121, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37753080

RESUMO

Introduction: Pulmonary dysfunction is an underestimated complication in tuberculosis (TB) infection, affecting quality of life (QoL). Although respiratory function tests objectively reflect lung disturbances in a specific moment, predictors of illness severity at the time of diagnosis are still lacking. Methods: We measured serum pro-inflammatory cytokines (TNF-α and IL-8), eicosanoids (PGE2, LTB4, RvD1, Mar1, and LXA4), a marker of tissue damage (cell-free nucleosomes), and indicators of redox status (malonaldehyde, 8-isoprostane, total oxidants, and antioxidants), as well as a score of radiological abnormalities (SRA) and a QoL questionnaire, in 25 patients with pulmonary TB at the time of diagnosis (t0) and two months after the initiation of treatment (t2). Results: We found higher antioxidant levels in the patients with the worst QoL at t0, and all the indicators of the prooxidant state were significantly reduced at t2, while the total antioxidant levels increased. LTB4, a pro-inflammatory eicosanoid, was diminished at t2, while all the pro-resolutory lipids decreased substantially. Significant correlations between the SRA and the QoL scores were observed, the latter showing a substantial reduction at t2, ranking it as a reliable tool for monitoring disease evolution during TB treatment. Discussion: These results suggest that evaluating a combination of these markers might be a valuable predictor of QoL improvement and a treatment response indicator; in particular, the oxidation metabolites and eicosanoid ratios could also be proposed as a future target for adjuvant therapies to reduce inflammation-associated lung injury in TB disease.


Assuntos
Tuberculose Latente , Tuberculose Pulmonar , Humanos , Qualidade de Vida , Antioxidantes , Leucotrieno B4 , Tuberculose Pulmonar/tratamento farmacológico , Cognição
13.
Biomedicines ; 11(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37189696

RESUMO

Severe inflammatory responses are associated with the misbalance of innate and adaptive immunity. TLRs, NLRs, and cytokine receptors play an important role in pathogen sensing and intracellular control, which remains unclear in COVID-19. This study aimed to evaluate IL-8 production in blood cells from COVID-19 patients in a two-week follow-up evaluation. Blood samples were taken at admission (t1) and after 14 days of hospitalization (t2). The functionality of TLR2, TLR4, TLR7/8, TLR9, NOD1, and NOD2 innate receptors and IL-12 and IFN-γ cytokine receptors was evaluated by whole blood stimulation with specific synthetic receptor agonists through the quantification of IL-8, TNF-α, or IFN-γ. At admission, ligand-dependent IL-8 secretion was 6.4, 13, and 2.5 times lower for TLR2, TLR4, and endosomal TLR7/8 receptors, respectively, in patients than in healthy controls. Additionally, IL-12 receptor-induced IFN-γ secretion was lower in COVID-19 patients than in healthy subjects. We evaluated the same parameters after 14 days and observed significantly higher responses for TLR2, TLR4, TLR7/8, TLR9, and NOD1, NOD2, and IFN-γ receptors. In conclusion, the low secretion of IL-8 through stimulation with agonists of TLR2, TLR4, TLR7/8, TLR9, and NOD2 at t1 suggests their possible contribution to immunosuppression following hyperinflammation in COVID-19 disease.

14.
NPJ Vaccines ; 8(1): 67, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37164959

RESUMO

There is still a need for safe, efficient, and low-cost coronavirus disease 2019 (COVID-19) vaccines that can stop transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we evaluated a vaccine candidate based on a live recombinant Newcastle disease virus (NDV) that expresses a stable version of the spike protein in infected cells as well as on the surface of the viral particle (AVX/COVID-12-HEXAPRO, also known as NDV-HXP-S). This vaccine candidate can be grown in embryonated eggs at a low cost, similar to influenza virus vaccines, and it can also be administered intranasally, potentially to induce mucosal immunity. We evaluated this vaccine candidate in prime-boost regimens via intramuscular, intranasal, or intranasal followed by intramuscular routes in an open-label non-randomized non-placebo-controlled phase I clinical trial in Mexico in 91 volunteers. The primary objective of the trial was to assess vaccine safety, and the secondary objective was to determine the immunogenicity of the different vaccine regimens. In the interim analysis reported here, the vaccine was found to be safe, and the higher doses tested were found to be immunogenic when given intramuscularly or intranasally followed by intramuscular administration, providing the basis for further clinical development of the vaccine candidate. The study is registered under ClinicalTrials.gov identifier NCT04871737.

15.
Biomolecules ; 12(4)2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35454079

RESUMO

There is a sex bias in tuberculosis's severity, prevalence, and pathogenesis, and the rates are higher in men. Immunological and physiological factors are fundamental contributors to the development of the disease, and sex-related factors could play an essential role in making women more resistant to severe forms of the disease. In this study, we evaluated sex-dependent differences in inflammatory markers. Serum samples were collected from 34 patients diagnosed with pulmonary TB (19 male and 15 female) and 27 healthy controls (18 male and 9 female). Cytokines IL2, IL4, IL6, IL8, IL10, IFNγ, TNFα, and GM-CSF, and eicosanoids PGE2, LTB4, RvD1, and Mar1 were measured using commercially available immunoassays. The MDA, a product of lipidic peroxidation, was measured by detecting thiobarbituric-acid-reactive substances (TBARS). Differential inflammation patterns between men and women were observed. Men had higher levels of IL6, IL8, and TNFα than women. PGE2 and LTB4 levels were higher in patients than healthy controls, but there were no differences for RvD1 and Mar1. Women had higher RvD1/PGE2 and RvD1/LTB4 ratios among patients. RvD1 plays a vital role in resolving the inflammatory process of TB in women. Men are the major contributors to the typical pro-inflammatory profile observed in the serum of tuberculosis patients.


Assuntos
Tuberculose Pulmonar , Tuberculose , Dinoprostona , Eicosanoides , Feminino , Humanos , Inflamação/complicações , Interleucina-6 , Interleucina-8 , Leucotrieno B4 , Masculino , Tuberculose/complicações , Tuberculose Pulmonar/complicações , Fator de Necrose Tumoral alfa
16.
Biomolecules ; 12(2)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35204769

RESUMO

Vitamin D has an immunomodulatory function and is involved in eliminating pathogens. Vitamin D deficiencies reported in Type 2 diabetes mellitus (T2DM) patients make them more susceptible to developing tuberculosis (TB). The macrophages are the immune cells that control intracellular pathogens by producing the antimicrobial peptide cathelicidin-LL37. This pathway involves TLR activation by pathogens, vitamin D receptor (VDR) ligation, and the enzyme 1α-hydroxylase Cytochrome P450 Family 27 Subfamily B Member 1 (CYP27B1). However, it is not clear whether the biological actions of vitamin D are affected by high glucose concentrations. This study aimed to evaluate the vitamin D contribution in the expression of VDR and CYP27B1, involved in the conversion of an inactive to an active form of vitamin D in the infected macrophages using M. tuberculosis as an infection model. The expression of LL37 and the nucleus translocation of VDR were evaluated as the readout of the response of vitamin D and determined if those processes are affected by glucose concentrations. Macrophages from healthy donors were cultured under glucose concentrations of 5.5, 15, or 30 mM, stimulated with vitamin D in inactive (25(OH)D3) or active (1,25(OH)2D3) forms, and infected with M. tuberculosis. The vitamin D-dependent induction of LL37 and the expression of VDR and CYP27B1 genes were analyzed by qPCR, and VDR translocation was analyzed in nuclear protein extracts by ELISA. M. tuberculosis downregulated the expression of LL37 regardless of the glucose concentration, whereas VDR and CYP27B1 upregulated it regardless of the glucose concentration. After evaluating two concentrations of vitamin D, 1 nM or 1 µM, the high concentration (1 µM) was necessary to restore the induction of LL37 expression in M. tuberculosis-infected macrophages. High concentrations of the inactive form of vitamin D restore the infected macrophages' ability to express LL37 regardless of the glucose concentration. This finding supports the idea that vitamin D administration in patients with T2DM could benefit TB control and prevention.


Assuntos
Diabetes Mellitus Tipo 2 , Vitamina D , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Humanos , Macrófagos/metabolismo , Vitamina D/farmacologia , Vitaminas
17.
J Biotechnol ; 353: 28-35, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35623476

RESUMO

Sericin, a silk-derived non-immunogenic protein, has been used to improve cell culture performance by increasing viability, cell concentration, and promoting adherence of several cell lines. Here, we hypothesized that the properties of sericin can enhance the amplification of flaviviruses in cell cultures. The propagation of flavivirus is inefficient and limits scientific research. Zika virus (ZIKV) is an important human pathogen that has been widely studied because of its high impact on public health. There is a need to amplify Zika virus both for research and vaccine development. In this work, we show that sericin improves ZIKV amplification in insect (C6/36) and mammalian (Vero) cell cultures, and that it has a cryoprotectant capacity. Supplementation of cell culture media with sericin at 80 µg/mL resulted in a significant increase of 1 log in the concentration of ZIKV infectious particles produced from both cell lines. Furthermore, final virus yields increased between 5 and 10-fold in Vero cells and between 7 and 23-fold in C6/36 cells when sericin was supplemented, compared to control conditions. These results show that sericin is an effective supplement to increase ZIKV production by Vero and C6/36 cells. Additionally, sericin was a suitable cryoprotective agent, and hence an alternative to FBS and DMSO, for the cryopreservation of C6/36 cells but not for Vero cells.


Assuntos
Sericinas , Infecção por Zika virus , Zika virus , Animais , Técnicas de Cultura de Células/métodos , Chlorocebus aethiops , Humanos , Insetos , Mamíferos , Sericinas/metabolismo , Sericinas/farmacologia , Seda/metabolismo , Células Vero , Infecção por Zika virus/tratamento farmacológico
18.
J Immunol Res ; 2022: 2909487, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402623

RESUMO

The process by which blood cells are generated has been widely studied in homeostasis and during pathogen-triggered inflammatory response. Recently, murine lungs have been shown to be a significant source of hematopoietic progenitors in a process known as extramedullary hematopoiesis. Using multiparametric flow cytometry, we have identified mesenchymal, endothelial, and hematopoietic progenitor cells that express the secreted small protein Isthmin 1 (ISM1). Further characterization of hematopoietic progenitor cells indicated that ISM1+ Lineage- Sca-1+ c-kit+ (ISM1+ LSK) cells are enriched in short-term hematopoietic stem cells (ST-HSCs). Moreover, most Sca-1+ ISM1+ cells express the residence marker CD49a, and this correlated with their localization in the extravascular region of the lung, indicating that ISM1+ cells are lung-resident cells. We also observed that ISM1+ cells express TLR4, TLR5, and TLR9, and, in a mouse model of sepsis induced by P. aeruginosa, we observed that all the LSK and ISM1+LSK cells were affected. We conclude that ISM1 is a novel biomarker associated with progenitor-like cells. ISM1+ cells are involved in the response to a bacterial challenge, suggesting an association between ISM1-producing cells and dangerous inflammatory responses like sepsis.


Assuntos
Células-Tronco Hematopoéticas , Sepse , Animais , Hematopoese , Homeostase , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas , Sepse/metabolismo
19.
Sci Rep ; 12(1): 2322, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149705

RESUMO

Acute lymphocytic leukemia is the most common type of cancer in pediatric individuals. Glucose regulated protein (GRP78) is an endoplasmic reticulum chaperone that facilitates the folding and assembly of proteins and regulates the unfolded protein response pathway. GRP78 has a role in survival of cancer and metastasis and cell-surface associated GRP78 (sGRP78) is expressed on cancer cells but not in normal cells. Here, we explored the presence of sGRP78 in pediatric B-ALL at diagnosis and investigated the correlation with bona fide markers of leukemia. By using a combination of flow cytometry and high multidimensional analysis, we found a distinctive cluster containing high levels of sGRP78, CD10, CD19, and CXCR4 in bone marrow samples obtained from High-risk leukemia patients, which was absent in the compartment of Standard-risk leukemia. We confirmed that sGRP78+CXCR4+ blood-derived cells were more frequent in High-risk leukemia patients. Finally, we analyzed the dissemination capacity of sGRP78 leukemia cells in a model of xenotransplantation. sGRP78+ cells emigrated to the bone marrow and lymph nodes, maintaining the expression of CXCR4. Testing the presence of sGRP78 and CXCR4 together with conventional markers may help to achieve a better categorization of High and Standard-risk pediatric leukemia at diagnosis.


Assuntos
Chaperona BiP do Retículo Endoplasmático/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Receptores CXCR4/metabolismo , Adolescente , Animais , Antígenos CD/metabolismo , Linhagem Celular , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Células Neoplásicas Circulantes/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/etiologia , Fatores de Risco
20.
medRxiv ; 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35169806

RESUMO

There is still a need for safe, efficient and low-cost coronavirus disease 2019 (COVID-19) vaccines that can stop transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we evaluated a vaccine candidate based on a live recombinant Newcastle disease virus (NDV) that expresses a stable version of the spike protein in infected cells as well as on the surface of the viral particle (AVX/COVID-12-HEXAPRO, also known as NDV-HXP-S). This vaccine candidate can be grown in embryonated eggs at low cost similar to influenza virus vaccines and it can also be administered intranasally, potentially to induce mucosal immunity. We evaluated this vaccine candidate in prime-boost regimens via intramuscular, intranasal, or intranasal followed by intramuscular routes in an open label non-randomized non-placebo-controlled phase I clinical trial in Mexico in 91 volunteers. The primary objective of the trial was to assess vaccine safety and the secondary objective was to determine the immunogenicity of the different vaccine regimens. In the interim analysis reported here, the vaccine was found to be safe and the higher doses tested were found to be immunogenic when given intramuscularly or intranasally followed by intramuscular administration, providing the basis for further clinical development of the vaccine candidate. The study is registered under ClinicalTrials.gov identifier NCT04871737. Funding was provided by Avimex and CONACYT.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa