Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 171(6): 1437-1452.e17, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29195078

RESUMO

We previously piloted the concept of a Connectivity Map (CMap), whereby genes, drugs, and disease states are connected by virtue of common gene-expression signatures. Here, we report more than a 1,000-fold scale-up of the CMap as part of the NIH LINCS Consortium, made possible by a new, low-cost, high-throughput reduced representation expression profiling method that we term L1000. We show that L1000 is highly reproducible, comparable to RNA sequencing, and suitable for computational inference of the expression levels of 81% of non-measured transcripts. We further show that the expanded CMap can be used to discover mechanism of action of small molecules, functionally annotate genetic variants of disease genes, and inform clinical trials. The 1.3 million L1000 profiles described here, as well as tools for their analysis, are available at https://clue.io.


Assuntos
Perfilação da Expressão Gênica/métodos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Perfilação da Expressão Gênica/economia , Humanos , Neoplasias/tratamento farmacológico , Especificidade de Órgãos , Preparações Farmacêuticas/metabolismo , Análise de Sequência de RNA/economia , Análise de Sequência de RNA/métodos , Bibliotecas de Moléculas Pequenas
2.
J Pharmacol Exp Ther ; 360(1): 106-116, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27789680

RESUMO

The Cys-Cys chemokine receptor 6 (CCR6) is a well-established modulator of inflammation. Although several genetic associations have been identified between CCR6 polymorphisms and immune system disorders (e.g., rheumatoid arthritis and Crohn's disease), the pharmacological effects of naturally occurring missense mutations in this receptor have yet to be characterized. In this study, we initially assessed G protein-mediated signaling and observed that wild-type (WT) CCR6 exhibited ligand-independent activity. In addition, we found that the five most frequent CCR6 missense variants (A89T, A150V, R155W, G345S, and A369V) exhibited decreased basal and/or ligand induced Gαi protein signaling. To complement the study of these loss-of-function variants, we engineered a set of constitutively active CCR6 receptors. Selected mutations enhanced basal G protein-mediated signaling up to 3-fold relative to the WT value. Using a bioluminescence resonance energy transfer assay we investigated the ability of each naturally occurring and engineered CCR6 receptor mutant to recruit ß-arrestin. In contrast to G protein-mediated signaling, ß-arrestin mobilization was largely unperturbed by the naturally occurring loss-of-function CCR6 variants. Elevated recruitment of ß-arrestin was observed in one of the engineered constitutively active mutants (T98P). Our results demonstrate that point mutations in CCR6 can result in either a gain or loss of receptor function. These observations underscore the need to explore how CCR6 natural variants may influence immune cell physiology and human disease.


Assuntos
Mutação Puntual , Receptores CCR6/genética , Receptores CCR6/metabolismo , Bases de Dados Genéticas , Humanos , Transporte Proteico/genética , beta-Arrestinas/metabolismo
3.
Cancer Cell ; 21(4): 547-62, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22516262

RESUMO

MCL1, which encodes the antiapoptotic protein MCL1, is among the most frequently amplified genes in human cancer. A chemical genomic screen identified compounds, including anthracyclines, that decreased MCL1 expression. Genomic profiling indicated that these compounds were global transcriptional repressors that preferentially affect MCL1 due to its short mRNA half-life. Transcriptional repressors and MCL1 shRNAs induced apoptosis in the same cancer cell lines and could be rescued by physiological levels of ectopic MCL1 expression. Repression of MCL1 released the proapoptotic protein BAK from MCL1, and Bak deficiency conferred resistance to transcriptional repressors. A computational model, validated in vivo, indicated that high BCL-xL expression confers resistance to MCL1 repression, thereby identifying a patient-selection strategy for the clinical development of MCL1 inhibitors.


Assuntos
Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína bcl-X/fisiologia , Animais , Apoptose/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Genômica , Humanos , Camundongos , Modelos Genéticos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , RNA Interferente Pequeno , Bibliotecas de Moléculas Pequenas , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/fisiologia
4.
Nat Biotechnol ; 27(1): 77-83, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19098899

RESUMO

The aberrant activation of tyrosine kinases represents an important oncogenic mechanism, and yet the majority of such events remain undiscovered. Here we describe a bead-based method for detecting phosphorylation of both wild-type and mutant tyrosine kinases in a multiplexed, high-throughput and low-cost manner. With the aim of establishing a tyrosine kinase-activation catalog, we used this method to profile 130 human cancer lines. Follow-up experiments on the finding that SRC is frequently phosphorylated in glioblastoma cell lines showed that SRC is also activated in primary glioblastoma patient samples and that the SRC inhibitor dasatinib (Sprycel) inhibits viability and cell migration in vitro and tumor growth in vivo. Testing of dasatinib-resistant tyrosine kinase alleles confirmed that SRC is indeed the relevant target of dasatinib, which inhibits many tyrosine kinases. These studies establish the feasibility of tyrosine kinome-wide phosphorylation profiling and point to SRC as a possible therapeutic target in glioblastoma.


Assuntos
Biotecnologia/métodos , Glioblastoma/terapia , Proteínas Tirosina Quinases/química , Animais , Linhagem Celular Tumoral , Dasatinibe , Resistencia a Medicamentos Antineoplásicos , Técnicas Genéticas , Glioblastoma/enzimologia , Humanos , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Fosforilação , Pirimidinas/farmacologia , Tiazóis/farmacologia , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa