Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38142289

RESUMO

Concerns about the potential neurotoxic effects of anesthetics on developing brain exist. When making clinical decisions, the timing and dosage of anesthetic exposure are critical factors to consider due to their associated risks. In our study, we investigated the impact of repeated anesthetic exposures on the brain development trajectory of a cohort of rhesus monkeys (n = 26) over their first 2 yr of life, utilizing longitudinal magnetic resonance imaging data. We hypothesized that early or high-dose anesthesia exposure could negatively influence structural brain development. By employing the generalized additive mixed model, we traced the longitudinal trajectories of brain volume, cortical thickness, and white matter integrity. The interaction analysis revealed that age and cumulative anesthetic dose were variably linked to white matter integrity but not to morphometric measures. Early high-dose exposure was associated with increased mean, axial, and radial diffusivities across all white matter regions, compared to late-low-dose exposure. Our findings indicate that early or high-dose anesthesia exposure during infancy disrupts structural brain development in rhesus monkeys. Consequently, the timing of elective surgeries and procedures that require anesthesia for children and pregnant women should be strategically planned to account for the cumulative dose of volatile anesthetics, aiming to minimize the potential risks to brain development.


Assuntos
Anestésicos , Substância Branca , Humanos , Animais , Criança , Feminino , Gravidez , Macaca mulatta , Imagem de Tensor de Difusão/métodos , Encéfalo , Imageamento por Ressonância Magnética , Substância Branca/patologia , Anestésicos/toxicidade
2.
Neuroimage ; 265: 119761, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455762

RESUMO

Accurate measurement of Alzheimer's disease (AD) pathology in older adults without significant clinical impairment is critical to assessing intervention strategies aimed at slowing AD-related cognitive decline. The U.S. Study to Protect Brain Health Through Lifestyle Intervention to Reduce Risk (POINTER) is a 2-year randomized controlled trial to evaluate the effect of multicomponent risk reduction strategies in older adults (60-79 years) who are cognitively unimpaired but at increased risk for cognitive decline/dementia due to factors such as cardiovascular disease and family history. The POINTER Imaging ancillary study is collecting tau-PET ([18F]MK6240), beta-amyloid (Aß)-PET ([18F]florbetaben [FBB]) and MRI data to evaluate neuroimaging biomarkers of AD and cerebrovascular pathophysiology in this at-risk sample. Here 481 participants (70.0±5.0; 66% F) with baseline MK6240, FBB and structural MRI scans were included. PET scans were coregistered to the structural MRI which was used to create FreeSurfer-defined reference regions and target regions of interest (ROIs). We also created off-target signal (OTS) ROIs to examine the magnitude and distribution of MK6240 OTS across the brain as well as relationships between OTS and age, sex, and race. OTS was unimodally distributed, highly correlated across OTS ROIs and related to younger age and sex but not race. Aiming to identify an optimal processing approach for MK6240 that would reduce the influence of OTS, we compared our previously validated MRI-guided standard PET processing and 6 alternative approaches. The alternate approaches included combinations of reference region erosion and meningeal OTS masking before spatial smoothing as well as partial volume correction. To compare processing approaches we examined relationships between target ROIs (entorhinal cortex (ERC), hippocampus or a temporal meta-ROI (MetaROI)) SUVR and age, sex, race, Aß and a general cognitive status measure, the Modified Telephone Interview for Cognitive Status (TICSm). Overall, the processing approaches performed similarly, and none showed a meaningful improvement over standard processing. Across processing approaches we observed previously reported relationships with MK6240 target ROIs including positive associations with age, an Aß+> Aß- effect and negative associations with cognition. In sum, we demonstrated that different methods for minimizing effects of OTS, which is highly correlated across the brain within subject, produced no substantive change in our performance metrics. This is likely because OTS contaminates both reference and target regions and this contamination largely cancels out in SUVR data. Caution should be used when efforts to reduce OTS focus on target or reference regions in isolation as this may exacerbate OTS contamination in SUVR data.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Tomografia por Emissão de Pósitrons/métodos , Proteínas tau/metabolismo , Pessoa de Meia-Idade
3.
Magn Reson Med ; 89(1): 112-127, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36198002

RESUMO

PURPOSE: To improve image quality and resolution of dynamic susceptibility contrast perfusion weighted imaging (DSC-PWI) by developing acquisition and reconstruction methods exploiting the temporal regularity property of DSC-PWI signal. THEORY AND METHODS: A novel regularized reconstruction is proposed that recovers DSC-PWI series from interleaved segmented spiral k-space acquisition using higher order temporal smoothness (HOTS) properties of the DSC-PWI signal. The HOTS regularization is designed to tackle representational insufficiency of the standard first-order temporal regularizations for supporting higher accelerations. The higher accelerations allow for k-space coverage with shorter spiral interleaves resulting in improved acquisition point spread function, and acquisition of images at multiple TEs for more accurate DSC-PWI analysis. RESULTS: The methods were evaluated in simulated and in-vivo studies. HOTS regularization provided increasingly more accurate models for DSC-PWI than the standard first-order methods with either quadratic or robust norms at the expense of increased noise. HOTS DSC-PWI optimized for noise and accuracy demonstrated significant advantages over both spiral DSC-PWI without temporal regularization and traditional echo-planar DSC-PWI, improving resolution and mitigating image artifacts associated with long readout, including blurring and geometric distortions. In context of multi-echo DSC-PWI, the novel methods allowed ∼4.3× decrease of voxel volume, providing 2× number of TEs compared to the previously published results. CONCLUSIONS: Proposed HOTS reconstruction combined with dynamic spiral sampling represents a valid mechanism for improving image quality and resolution of DSC-PWI significantly beyond those available with established fast imaging techniques.


Assuntos
Angiografia por Ressonância Magnética , Imagem de Perfusão , Angiografia por Ressonância Magnética/métodos , Perfusão , Imageamento por Ressonância Magnética/métodos
4.
Magn Reson Med ; 90(2): 583-595, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37092852

RESUMO

PURPOSE: To reduce the total scan time of multiple postlabeling delay (multi-PLD) pseudo-continuous arterial spin labeling (pCASL) by developing a hierarchically structured 3D convolutional neural network (H-CNN) that estimates the arterial transit time (ATT) and cerebral blow flow (CBF) maps from the reduced number of PLDs as well as averages. METHODS: A total of 48 subjects (38 females and 10 males), aged 56-80 years, compromising a training group (n = 45) and a validation group (n = 3) underwent MRI including multi-PLD pCASL. We proposed an H-CNN to estimate the ATT and CBF maps using a reduced number of PLDs and a separately reduced number of averages. The proposed method was compared with a conventional nonlinear model fitting method using the mean absolute error (MAE). RESULTS: The H-CNN provided the MAEs of 32.69 ms for ATT and 3.32 mL/100 g/min for CBF estimations using a full data set that contains six PLDs and six averages in the 3 test subjects. The H-CNN also showed that the smaller number of PLDs can be used to estimate both ATT and CBF without significant discrepancy from the reference (MAEs of 231.45 ms for ATT and 9.80 mL/100 g/min for CBF using three of six PLDs). CONCLUSION: The proposed machine learning-based ATT and CBF mapping offers substantially reduced scan time of multi-PLD pCASL.


Assuntos
Artérias , Imageamento por Ressonância Magnética , Masculino , Feminino , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Circulação Cerebrovascular/fisiologia , Marcadores de Spin
5.
Alzheimers Dement ; 18(3): 457-468, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34310044

RESUMO

INTRODUCTION: Mid-life dietary patterns are associated with Alzheimer's disease (AD) risk, although few controlled trials have been conducted. METHODS: Eighty-seven participants (age range: 45 to 65) with normal cognition (NC, n = 56) or mild cognitive impairment (MCI, n = 31) received isocaloric diets high or low in saturated fat, glycemic index, and sodium (Western-like/West-diet vs. Mediterranean-like/Med-diet) for 4 weeks. Diet effects on cerebrospinal fluid (CSF) biomarkers, cognition, and cerebral perfusion were assessed to determine whether responses differed by cognitive status. RESULTS: CSF amyloid beta (Aß)42/40 ratios increased following the Med-diet, and decreased after West-diet for NC adults, whereas the MCI group showed the reverse pattern. For the MCI group, the West-diet reduced and the Med-diet increased total tau (t-tau), whereas CSF Aß42 /t-tau ratios increased following the West-diet and decreased following the Med-diet. For NC participants, the Med-diet increased and the West-diet decreased cerebral perfusion. DISCUSSION: Diet response during middle age may highlight early pathophysiological processes that increase AD risk.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Dieta Mediterrânea , Dieta Ocidental , Adulto , Idoso , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Circulação Cerebrovascular , Cognição/fisiologia , Disfunção Cognitiva/líquido cefalorraquidiano , Humanos , Pessoa de Meia-Idade , Fragmentos de Peptídeos/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano
6.
Alzheimers Dement ; 18(4): 551-560, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34482601

RESUMO

INTRODUCTION: Little is known about how antecedent vascular risk factor (VRF) profiles impact late-life brain health. METHODS: We examined baseline VRFs, and cognitive testing and neuroimaging measures (ß-amyloid [Aß] PET, MRI) in a diverse longitudinal cohort (N = 159; 50% African-American, 50% White) from Wake Forest's Multi-Ethnic Study of Atherosclerosis Core. RESULTS: African-Americans exhibited greater baseline Cardiovascular Risk Factors, Aging, and Incidence of Dementia (CAIDE), Framingham stroke risk profile (FSRP), and atherosclerotic cardiovascular disease risk estimate (ASCVD) scores than Whites. We observed no significant racial differences in Aß positivity, cortical thickness, or white matter hyperintensity (WMH) volume. Higher baseline VRF scores were associated with lower cortical thickness and greater WMH volume, and FSRP and CAIDE were associated with Aß. Aß was cross-sectionally associated with cognition, and all imaging biomarkers were associated with greater 6-year cognitive decline. DISCUSSION: Results suggest the convergence of multiple vascular and Alzheimer's processes underlying neurodegeneration and cognitive decline.


Assuntos
Aterosclerose , Disfunção Cognitiva , Aterosclerose/diagnóstico por imagem , Biomarcadores , Encéfalo/diagnóstico por imagem , Cognição , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/epidemiologia , Humanos , Imageamento por Ressonância Magnética , Neuroimagem , Fatores de Risco
7.
Cereb Cortex ; 30(8): 4325-4335, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32239147

RESUMO

The typical developmental trajectory of brain structure among nonhuman primates (NHPs) remains poorly understood. In this study, we characterized the normative trajectory of developmental change among a cohort of rhesus monkeys (n = 28), ranging in age from 2 to 22 months, using structural MRI datasets that were longitudinally acquired every 3-4 months. We hypothesized that NHP-specific transient intracranial volume decreases reported during late infancy would be part of the typical developmental process, which is driven by volumetric contraction of gray matter in primary functional areas. To this end, we performed multiscale analyses from the whole brain to voxel level, characterizing regional heterogeneity, hemispheric asymmetry, and sexual dimorphism in developmental patterns. The longitudinal trajectory of brain development was explained by three different regional volumetric growth patterns (exponentially decreasing, undulating, and linearly increasing), which resulted in developmental brain volume curves with transient brain volumetric decreases. White matter (WM) fractional anisotropy increased with age, corresponding to WM volume increases, while mean diffusivity (MD) showed biphasic patterns. The longitudinal trajectory of brain development in young rhesus monkeys follows typical maturation patterns seen in humans, but regional volumetric and MD changes are more dynamic in rhesus monkeys compared with humans, with marked decreases followed by "rebound-like" increases.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Macaca mulatta/anatomia & histologia , Macaca mulatta/crescimento & desenvolvimento , Neurogênese/fisiologia , Animais , Imagem de Tensor de Difusão/métodos , Feminino , Masculino
8.
J Neurosci ; 35(46): 15307-25, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26586819

RESUMO

Mindfulness meditation reduces pain in experimental and clinical settings. However, it remains unknown whether mindfulness meditation engages pain-relieving mechanisms other than those associated with the placebo effect (e.g., conditioning, psychosocial context, beliefs). To determine whether the analgesic mechanisms of mindfulness meditation are different from placebo, we randomly assigned 75 healthy, human volunteers to 4 d of the following: (1) mindfulness meditation, (2) placebo conditioning, (3) sham mindfulness meditation, or (4) book-listening control intervention. We assessed intervention efficacy using psychophysical evaluation of experimental pain and functional neuroimaging. Importantly, all cognitive manipulations (i.e., mindfulness meditation, placebo conditioning, sham mindfulness meditation) significantly attenuated pain intensity and unpleasantness ratings when compared to rest and the control condition (p < 0.05). Mindfulness meditation reduced pain intensity (p = 0.032) and pain unpleasantness (p < 0.001) ratings more than placebo analgesia. Mindfulness meditation also reduced pain intensity (p = 0.030) and pain unpleasantness (p = 0.043) ratings more than sham mindfulness meditation. Mindfulness-meditation-related pain relief was associated with greater activation in brain regions associated with the cognitive modulation of pain, including the orbitofrontal, subgenual anterior cingulate, and anterior insular cortex. In contrast, placebo analgesia was associated with activation of the dorsolateral prefrontal cortex and deactivation of sensory processing regions (secondary somatosensory cortex). Sham mindfulness meditation-induced analgesia was not correlated with significant neural activity, but rather by greater reductions in respiration rate. This study is the first to demonstrate that mindfulness-related pain relief is mechanistically distinct from placebo analgesia. The elucidation of this distinction confirms the existence of multiple, cognitively driven, supraspinal mechanisms for pain modulation. SIGNIFICANCE STATEMENT: Recent findings have demonstrated that mindfulness meditation significantly reduces pain. Given that the "gold standard" for evaluating the efficacy of behavioral interventions is based on appropriate placebo comparisons, it is imperative that we establish whether there is an effect supporting meditation-related pain relief above and beyond the effects of placebo. Here, we provide novel evidence demonstrating that mindfulness meditation produces greater pain relief and employs distinct neural mechanisms than placebo cream and sham mindfulness meditation. Specifically, mindfulness meditation-induced pain relief activated higher-order brain regions, including the orbitofrontal and cingulate cortices. In contrast, placebo analgesia was associated with decreased pain-related brain activation. These findings demonstrate that mindfulness meditation reduces pain through unique mechanisms and may foster greater acceptance of meditation as an adjunct pain therapy.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Atenção Plena/métodos , Limiar da Dor/fisiologia , Dor/reabilitação , Efeito Placebo , Adulto , Encéfalo/irrigação sanguínea , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Dor/psicologia , Medição da Dor , Estimulação Física/efeitos adversos , Psicofísica , Análise de Regressão , Respiração , Adulto Jovem
9.
Radiology ; 281(3): 919-926, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27775478

RESUMO

Purpose To examine the effects of subconcussive impacts resulting from a single season of youth (age range, 8-13 years) football on changes in specific white matter (WM) tracts as detected with diffusion-tensor imaging in the absence of clinically diagnosed concussions. Materials and Methods Head impact data were recorded by using the Head Impact Telemetry system and quantified as the combined-probability risk-weighted cumulative exposure (RWECP). Twenty-five male participants were evaluated for seasonal fractional anisotropy (FA) changes in specific WM tracts: the inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus, and superior longitudinal fasciculus (SLF). Fiber tracts were segmented into a central core and two fiber terminals. The relationship between seasonal FA change in the whole fiber, central core, and the fiber terminals with RWECP was also investigated. Linear regression analysis was conducted to determine the association between RWECP and change in fiber tract FA during the season. Results There were statistically significant linear relationships between RWEcp and decreased FA in the whole (R2 = 0.433; P = .003), core (R2 = 0.3649; P = .007), and terminals (R2 = 0.5666; P < .001) of left IFOF. A trend toward statistical significance (P = .08) in right SLF was observed. A statistically significant correlation between decrease in FA of the right SLF terminal and RWECP was also observed (R2 = 0.2893; P = .028). Conclusion This study found a statistically significant relationship between head impact exposure and change of FA fractional anisotropy value of whole, core, and terminals of left IFOF and right SLF's terminals where WM and gray matter intersect, in the absence of a clinically diagnosed concussion. © RSNA, 2016.


Assuntos
Concussão Encefálica/patologia , Futebol Americano/lesões , Traumatismos Cranianos Fechados/patologia , Substância Branca/patologia , Adolescente , Criança , Imagem de Tensor de Difusão , Lobo Frontal/patologia , Humanos , Masculino , Fibras Nervosas Mielinizadas/patologia , Vias Neurais/patologia , Lobo Occipital/patologia
10.
Magn Reson Med ; 70(2): 420-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23023395

RESUMO

Growing demand for high spatial resolution blood oxygenation level dependent (BOLD) functional magnetic resonance imaging faces a challenge of the spatial resolution versus coverage or temporal resolution tradeoff, which can be addressed by methods that afford increased acquisition efficiency. Spiral acquisition trajectories have been shown to be superior to currently prevalent echo-planar imaging in terms of acquisition efficiency, and high spatial resolution can be achieved by employing multiple-shot spiral acquisition. The interleaved spiral in/out trajectory is preferred over spiral-in due to increased BOLD signal contrast-to-noise ratio (CNR) and higher acquisition efficiency than that of spiral-out or noninterleaved spiral in/out trajectories (Law & Glover. Magn Reson Med 2009; 62:829-834.), but to date applicability of the multishot interleaved spiral in/out for high spatial resolution imaging has not been studied. Herein we propose multishot interleaved spiral in/out acquisition and investigate its applicability for high spatial resolution BOLD functional magnetic resonance imaging. Images reconstructed from interleaved spiral-in and -out trajectories possess artifacts caused by differences in T2 decay, off-resonance, and k-space errors associated with the two trajectories. We analyze the associated errors and demonstrate that application of conjugate phase reconstruction and spectral filtering can substantially mitigate these image artifacts. After applying these processing steps, the multishot interleaved spiral in/out pulse sequence yields high BOLD CNR images at in-plane resolution below 1 × 1 mm while preserving acceptable temporal resolution (4 s) and brain coverage (15 slices of 2 mm thickness). Moreover, this method yields sufficient BOLD CNR at 1.5 mm isotropic resolution for detection of activation in hippocampus associated with cognitive tasks (Stern memory task). The multishot interleaved spiral in/out acquisition is a promising technique for high spatial resolution BOLD functional magnetic resonance imaging applications.


Assuntos
Artefatos , Mapeamento Encefálico/métodos , Potenciais Evocados/fisiologia , Hipocampo/fisiologia , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Memória/fisiologia , Algoritmos , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
J Magn Reson Imaging ; 38(5): 1111-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24105693

RESUMO

PURPOSE: To develop quantitative cerebral blood flow (CBF) imaging using pseudo-continuous arterial spin labeling (PCASL) in swine, accounting for their cerebrovascular anatomy and physiology. MATERIALS AND METHODS: Five domestic pigs (2.5-3 months, 25 kg) were used in these studies. The orientation of the labeled arteries, T1bl , M0bl , and T1gm were measured in swine. Labeling parameters were tuned with respect to blood velocity to optimize labeling efficiency based on the data collected from three subjects. Finally, CBF and arterial transit time (ATT) maps for two subjects were created from PCASL data to determine global averages. RESULTS: The average labeling efficiency over measured velocities of 5-18 cm/s was 0.930. The average T1bl was 1546 ms, the average T1gm was 1224 ms, and the average blood-to-white matter ratio of M0 was 1.25, which was used to find M0bl . The global averages over the subjects were 54.05 mL/100 g tissue/min CBF and 1261 ms ATT. CONCLUSION: This study demonstrates the feasibility of PCASL for CBF quantification in swine. Quantification of CBF using PCASL in swine can be further developed as an accessible and cost-effective model of human cerebral perfusion for investigating injuries that affect blood flow.


Assuntos
Algoritmos , Artérias Cerebrais/anatomia & histologia , Artérias Cerebrais/fisiologia , Circulação Cerebrovascular/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Animais , Velocidade do Fluxo Sanguíneo/fisiologia , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Marcadores de Spin , Suínos
12.
Pain ; 164(2): 280-291, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36095039

RESUMO

ABSTRACT: For millenniums, mindfulness was believed to diminish pain by reducing the influence of self-appraisals of noxious sensations. Today, mindfulness meditation is a highly popular and effective pain therapy that is believed to engage multiple, nonplacebo-related mechanisms to attenuate pain. Recent evidence suggests that mindfulness meditation-induced pain relief is associated with the engagement of unique cortico-thalamo-cortical nociceptive filtering mechanisms. However, the functional neural connections supporting mindfulness meditation-based analgesia remain unknown. This mechanistically focused clinical trial combined functional magnetic resonance imaging with psychophysical pain testing (49°C stimulation and pain visual analogue scales) to identify the neural connectivity supporting the direct modulation of pain-related behavioral and neural responses by mindfulness meditation. We hypothesized that mindfulness meditation-based pain relief would be reflected by greater decoupling between brain mechanisms supporting appraisal (prefrontal) and nociceptive processing (thalamus). After baseline pain testing, 40 participants were randomized to a well-validated, 4-session mindfulness meditation or book-listening regimen. Functional magnetic resonance imaging and noxious heat (49°C; right calf) were combined during meditation to test study hypotheses. Mindfulness meditation significantly reduced behavioral and neural pain responses when compared to the controls. Preregistered (NCT03414138) whole-brain analyses revealed that mindfulness meditation-induced analgesia was moderated by greater thalamus-precuneus decoupling and ventromedial prefrontal deactivation, respectively, signifying a pain modulatory role across functionally distinct neural mechanisms supporting self-referential processing. Two separate preregistered seed-to-seed analyses found that mindfulness meditation-based pain relief was also associated with weaker contralateral thalamic connectivity with the prefrontal and primary somatosensory cortex, respectively. Thus, we propose that mindfulness meditation is associated with a novel self-referential nociceptive gating mechanism to reduce pain.


Assuntos
Meditação , Atenção Plena , Humanos , Manejo da Dor/métodos , Atenção Plena/métodos , Meditação/métodos , Rede de Modo Padrão , Dor , Imageamento por Ressonância Magnética/métodos , Tálamo/diagnóstico por imagem
13.
Magn Reson Med ; 67(5): 1412-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21826730

RESUMO

Direct measurement of neural currents by means of MRI can potentially open a high temporal resolution (10-100 ms) window applicable for monitoring dynamics of neuronal activity without loss of the high spatial resolution afforded by MRI. Previously, we have shown that the alternating balanced steady state imaging affords high sensitivity to weak periodic currents owing to its amplification of periodic spin phase perturbations. This technique, however, requires precise synchronization of such perturbations to the radiofrequency pulses. Herein, we extend alternating balanced steady state imaging to multiple balanced alternating steady states for estimation of neural current waveforms. Simulations and phantom experiments show that the off-resonance profile of the multiple alternating steady state signal carries information about the frequency content of driving waveforms. In addition, the method is less sensitive than alternating balanced steady state to precise waveform timing relative to radiofrequency pulses. Thus, multiple alternating steady state technique is potentially applicable to MR imaging of the waveforms of periodic neuronal activity.


Assuntos
Algoritmos , Encéfalo/fisiologia , Potenciais Evocados/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Humanos , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Marcadores de Spin
14.
Magn Reson Med ; 68(4): 1135-44, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22234782

RESUMO

The adiabatic inversion of blood in pseudocontinuous arterial spin labeling (PCASL) is highly sensitive to off-resonance effects and gradient imperfections and this sensitivity can lead to tagging efficiency loss and unpredictable variations in cerebral blood flow estimates. This efficiency loss is caused by a phase tracking error between the RF pulses and the flowing spins. This article introduces a new method, referred to as Optimized PCASL (OptPCASL), that minimizes the phase tracking error by applying an additional compensation RF phase term and in-plane gradients to the PCASL pulse train. The optimal RF phase and gradient amplitudes are determined using a prescan procedure, which consists of a series of short scans interleaved with automated postprocessing routines integrated to the scanner console. The prescan procedure is shown to minimize the phase tracking error in a robust and time efficient manner. As an example of its application, the use of OptPCASL for the improved detection of functional activation in the visual cortex is demonstrated and temporal signal-to-noise ratio (SNR), image SNR, and baseline cerebral blood flow measures are compared to those acquired from conventional PCASL.


Assuntos
Algoritmos , Mapeamento Encefálico/métodos , Circulação Cerebrovascular/fisiologia , Potenciais Evocados Visuais/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Córtex Visual/fisiologia , Adulto , Feminino , Humanos , Aumento da Imagem/métodos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Marcadores de Spin , Córtex Visual/anatomia & histologia
16.
J Alzheimers Dis ; 90(4): 1589-1599, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36314205

RESUMO

BACKGROUND: Cardiometabolic disorders (hypertension, diabetes) are key modifiable risk factors for Alzheimer's disease and related disorders. They often co-occur; yet, the extent to which they independently affect brain structure and function is unclear. OBJECTIVE: We hypothesized their combined effect is greater in associations with cognitive function and neuroimaging biomarkers of white matter (WM) health and cerebral perfusion in a diverse older adult cohort. METHODS: Participants aged 50-85 years received: clinical evaluation, oral glucose tolerance testing, neuroimaging, cognitive testing, and adjudication. Neuroimaging included: T1 (gray [GM]/WM segmentation, regional volumes/thicknesses); FLAIR (WM hyperintensity volume [WMHv]; arterial spin labeling (cerebral blood flow); diffusion tensor imaging (fractional anisotropy [FA]); and neurite orientation dispersion and density imaging (Free Water). Hypertension (HTN) and impaired glucose tolerance (IGT) were staged and cardiometabolic status was categorized (HTN only, IGT only, IGT+HTN, neither). Multivariable linear regression modeled associations with cognitive and neuroimaging measures (covariates: age, gender, race). RESULTS: MRI was available for 478 participants (35% mild cognitive impairment, 10% dementia) with mean age 70±8 years, 74% with HTN, 61% with IGT, and 15% self-identified as Black/African-American. IGT+HTN was significantly associated with cognitive impairment, higher WM Free Water and WMHv, lower FA, and lower GM perfusion compared to neither factor. HTN alone was associated with poorer cognition and lower GM perfusion. Cardiometabolic factors were not associated with GM macrostructure (volumes, temporal lobe cortical thickness) or cognitive status. CONCLUSION: HTN and its co-occurrence with IGT (HTN+IGT) were associated with lower global cognitive performance and reduced GM perfusion and impaired WM microstructure.


Assuntos
Hipertensão , Substância Branca , Humanos , Idoso , Imagem de Tensor de Difusão/métodos , Encéfalo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Cognição , Imageamento por Ressonância Magnética/métodos , Hipertensão/complicações , Hipertensão/diagnóstico por imagem , Água
17.
J Magn Reson Imaging ; 33(4): 980-7, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21448967

RESUMO

PURPOSE: To remove phase inconsistencies between multiple echoes, an algorithm using a radial acquisition to provide inherent phase and magnitude information for self correction was developed. The information also allows simultaneous support for parallel imaging for multiple coil acquisitions. MATERIALS AND METHODS: Without a separate field map acquisition, a phase estimate from each echo in multiple echo train was generated. When using a multiple channel coil, magnitude and phase estimates from each echo provide in vivo coil sensitivities. An algorithm based on the conjugate gradient method uses these estimates to simultaneously remove phase inconsistencies between echoes, and in the case of multiple coil acquisition, simultaneously provides parallel imaging benefits. The algorithm is demonstrated on single channel, multiple channel, and undersampled data. RESULTS: Substantial image quality improvements were demonstrated. Signal dropouts were completely removed and undersampling artifacts were well suppressed. CONCLUSION: The suggested algorithm is able to remove phase cancellation and undersampling artifacts simultaneously and to improve image quality of multiecho radial imaging, the important technique for fast three-dimensional MRI data acquisition.


Assuntos
Diagnóstico por Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Calibragem , Computadores , Difusão , Desenho de Equipamento , Análise de Fourier , Humanos , Imageamento por Ressonância Magnética/métodos , Radiologia/métodos
18.
Front Physiol ; 12: 645342, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135768

RESUMO

Vascular risk factors (e.g., obesity and hypertension) are associated with cerebral small vessel disease, Alzheimer's disease (AD) pathology, and dementia. Reduced perfusion may reflect the impaired ability of blood vessels to regulate blood flow in reaction to varying circumstances such as hypercapnia (increased end-tidal partial pressures of CO2). It has been shown that cerebrovascular reactivity (CVR) measured with blood-oxygen-level-dependent (BOLD) MRI is correlated with cognitive performance and alterations of CVR may be an indicator of vascular disfunction leading to cognitive decline. However, the underlying mechanism of CVR alterations in BOLD signal may not be straight-forward because BOLD signal is affected by multiple physiological parameters, such as cerebral blood flow (CBF), cerebral blood volume, and oxygen metabolism. Arterial spin labeling (ASL) MRI quantitatively measures blood flow in the brain providing images of local CBF. Therefore, in this study, we measured CBF and its changes using a dynamic ASL technique during a hypercapnia challenge and tested if CBF or CVR was related to cognitive performance using the Mini-mental state examination (MMSE) score. Seventy-eight participants underwent cognitive testing and MRI including ASL during a hypercapnia challenge with a RespirAct computer-controlled gas blender, targeting 10 mmHg higher end-tidal CO2 level than the baseline while end-tidal O2 level was maintained. Pseudo-continuous ASL (PCASL) was collected during a 2-min baseline and a 2-min hypercapnic period. CVR was obtained by calculating a percent change of CBF per the end-tidal CO2 elevation in mmHg between the baseline and the hypercapnic challenge. Multivariate regression analyses demonstrated that baseline resting CBF has no significant relationship with MMSE, while lower CVR in the whole brain gray matter (ß = 0.689, p = 0.005) and white matter (ß = 0.578, p = 0.016) are related to lower MMSE score. In addition, region of interest (ROI) based analysis showed positive relationships between MMSE score and CVR in 26 out of 122 gray matter ROIs.

19.
Neuroimage ; 49(2): 1510-23, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19778618

RESUMO

We present an acquisition and reconstruction method designed to acquire high resolution 3D fast spin echo diffusion tensor images while mitigating the major sources of artifacts in DTI-field distortions, eddy currents and motion. The resulting images, being 3D, are of high SNR, and being fast spin echoes, exhibit greatly reduced field distortions. This sequence utilizes variable density spiral acquisition gradients, which allow for the implementation of a self-navigation scheme by which both eddy current and motion artifacts are removed. The result is that high resolution 3D DTI images are produced without the need for eddy current compensating gradients or B(0) field correction. In addition, a novel method for fast and accurate reconstruction of the non-Cartesian data is employed. Results are demonstrated in the brains of normal human volunteers.


Assuntos
Imagem de Tensor de Difusão/métodos , Imageamento Tridimensional/métodos , Algoritmos , Artefatos , Encéfalo/anatomia & histologia , Simulação por Computador , Imagem de Tensor de Difusão/instrumentação , Feminino , Humanos , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/instrumentação , Masculino , Movimento (Física) , Imagens de Fantasmas
20.
Magn Reson Med ; 64(3): 799-810, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20578056

RESUMO

Pseudocontinuous arterial spin labeling (PCASL) has been demonstrated to provide the sensitivity of the continuous arterial spin labeling method while overcoming many of the limitations of that method. Because the specification of the phases in the radiofrequency pulse train in PCASL defines the tag and control conditions of the flowing arterial blood, its tagging efficiency is sensitive to factors, such as off-resonance fields, that induce phase mismatches between the radiofrequency pulses and the flowing spins. As a result, the quantitative estimation of cerebral blood flow with PCASL can exhibit a significant amount of error when these factors are not taken into account. In this paper, the sources of the tagging efficiency loss are characterized and a novel PCASL method that utilizes multiple phase offsets is proposed to reduce the tagging efficiency loss in PCASL. Simulations are performed to evaluate the feasibility and the performance of the proposed method. Quantitative estimates of cerebral blood flow obtained with multiple phase offset PCASL are compared to estimates obtained with conventional PCASL and pulsed arterial spin labeling. Our results show that multiple phase offset PCASL provides robust cerebral blood flow quantification while retaining much of the sensitivity advantage of PCASL.


Assuntos
Algoritmos , Encéfalo/fisiologia , Artérias Cerebrais/fisiologia , Circulação Cerebrovascular/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Encéfalo/irrigação sanguínea , Humanos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa