Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 111(3): 684-700, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36370413

RESUMO

Amniotic membrane (AM) is a naturally derived biomaterial with biological and mechanical properties important to Ophthalmology. The epithelial side of the AM promotes epithelialization, while the stromal side regulates inflammation. However, not all AMs are equal. AMs undergo different processing with resultant changes in cellular content and structure. This study evaluates the effects of sidedness and processing on human corneal epithelial cell (HCEC) activity, the effect of processing on HCEC inflammatory response, and then a case study is presented. Three differently processed, commercially available ocular AMs were selected: (1) Biovance®3L Ocular, a decellularized, dehydrated human AM (DDHAM), (2) AMBIO2®, a dehydrated human AM (DHAM), and (3) AmnioGraft®, a cryopreserved human AM (CHAM). HCECs were seeded onto the AMs and incubated for 1, 4 and 7 days. Cell adhesion and viability were evaluated using alamarBlue assay. HCEC migration was evaluated using a scratch wound assay. An inflammatory response was induced by TNF-α treatment. The effect of AM on the expression of pro-inflammatory genes in HCECs was compared using quantitative polymerase chain reaction (qPCR). Staining confirmed complete decellularization and the absence of nuclei in DDHAM. HCEC activity was best supported on the stromal side of DDHAM. Under inflammatory stimulation, DDHAM promoted a higher initial inflammatory response with a declining trend across time. Clinically, DDHAM was used to successfully treat anterior basement membrane dystrophy. Compared with DHAM and CHAM, DDHAM had significant positive effects on the cellular activities of HCECs in vitro, which may suggest greater ocular cell compatibility in vivo.


Assuntos
Âmnio , Olho , Humanos , Âmnio/metabolismo , Adesão Celular , Células Epiteliais , Inflamação
2.
J Exp Orthop ; 9(1): 69, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35849201

RESUMO

PURPOSE: Injectable connective tissue matrices (CTMs) may promote tendon healing, given their minimally invasive properties, structural and biochemical extracellular matrix components, and capacity to fill irregular spaces. The purpose of this study is to evaluate the effects of placental CTMs on the cellular activities of human tenocytes. Decellularization, the removal of cells, cell fragments, and DNA from CTMs, has been shown to reduce the host's inflammatory response. Therefore, the authors hypothesize that a decellularized CTM will provide a more cell-friendly matrix to support tenocyte functions. METHODS: Three human placental CTMs were selected for comparison: AmnioFill® (A-CTM), a minimally manipulated, non-viable cellular particulate, BioRenew™ (B-CTM), a liquid matrix, and Interfyl® (I-CTM), a decellularized flowable particulate. Adhesion and proliferation were evaluated using cell viability assays and tenocyte migration using a transwell migration assay. Gene expression of tenocyte markers, cytokines, growth factors, and matrix metalloprotease (MMP) in tenocytes were assessed using quantitative polymerase chain reaction. RESULTS: Although A-CTM supported more tenocyte adhesion, I-CTM promoted significantly more tenocyte proliferation compared with A-CTM and B-CTM. Unlike A-CTM, tenocyte migration was higher in I-CTM than the control. The presence of I-CTM also prevented the loss of tenocyte phenotype, attenuated the expression of pro-inflammatory cytokines, growth factors, and MMP, and promoted the expression of antifibrotic growth factor, TGFß3. CONCLUSION: Compared with A-CTM and B-CTM, I-CTM interacted more favorably with human tenocytes in vitro. I-CTM supported tenocyte proliferation with reduced de-differentiation and attenuation of the inflammatory response, suggesting that I-CTM may support tendon healing and regeneration in vivo.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa