Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Pflugers Arch ; 476(2): 243-256, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37993748

RESUMO

Motility of detrusor smooth muscle includes adrenergic relaxation and cholinergic contraction. Since the latter may be deregulated in overactive bladder (OAB) pathophysiology, anticholinergics are the standard therapy but occasionally less tolerated due to side effects such as dry mouth and constipation. ß3 adrenoceptor agonists also alleviate OAB symptoms by relaxing the detrusor muscle. Their age dependence, however, is far from understood. To address this issue, we induced contractions with KCl (60 mM) and carbachol (from 10 nM to 100 µM) in the presence of the ß3 adrenoceptor agonist CL316,243 (from 0.1 to 10 µM) in both human and rat muscle strips. Our results confirmed that both contractions were attenuated by ß3 adrenoceptor activation in both species, but with differing age dependence. In humans, specimens from mid-life subjects showed a significantly more pronounced effect of CL316,243 in attenuating carbachol-induced contractions than those from aged subjects (Cohen's d of maximal attenuation: 1.82 in mid-life versus 0.13 in aged) without altering EC50. Conversely, attenuation of KCl responses by CL316,243 increased during ageing (Spearman correlation coefficient = -0.584, P<0.01). In rats, both KCl- and carbachol-induced contractions were significantly more attenuated by CL316,243 in samples from adolescent as compared to aged samples. Immunohistochemistry in human detrusor sections proved ß3 adrenoreceptor abundance to remain unaltered during ageing. In conclusion, our findings suggest differential age-dependent changes in human ß3 adrenoceptor-dependent attenuation of detrusor contraction in terms of electromechanical versus pharmacomechanical coupling; they may help understand the differential responsiveness of OAB patients to ß3 agents.


Assuntos
Dioxóis , Bexiga Urinária Hiperativa , Bexiga Urinária , Adolescente , Humanos , Ratos , Animais , Idoso , Carbacol/farmacologia , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Músculo Liso , Bexiga Urinária Hiperativa/tratamento farmacológico , Receptores Adrenérgicos , Contração Muscular
2.
Pflugers Arch ; 475(10): 1133-1147, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37530804

RESUMO

Deep brain stimulation (DBS), a treatment for modulating the abnormal central neuronal circuitry, has become the standard of care nowadays and is sometimes the only option to reduce symptoms of movement disorders such as dystonia. However, on the one hand, there are still open questions regarding the pathomechanisms of dystonia and, on the other hand, the mechanisms of DBS on neuronal circuitry. That lack of knowledge limits the therapeutic effect and makes it hard to predict the outcome of DBS for individual dystonia patients. Finding electrophysiological biomarkers seems to be a promising option to enable adapted individualised DBS treatment. However, biomarker search studies cannot be conducted on patients on a large scale and experimental approaches with animal models of dystonia are needed. In this review, physiological findings of deep brain stimulation studies in humans and animal models of dystonia are summarised and the current pathophysiological concepts of dystonia are discussed.


Assuntos
Estimulação Encefálica Profunda , Distonia , Distúrbios Distônicos , Animais , Humanos , Distonia/terapia , Distúrbios Distônicos/terapia , Fenômenos Eletrofisiológicos , Modelos Animais
3.
Neurobiol Dis ; 184: 106221, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414365

RESUMO

Autoimmune-mediated encephalitis syndromes are increasingly being recognized as important clinical entities. They need to be thought of as differential diagnosis in any patient presenting with fast-onset psychosis or psychiatric problems, memory deficits or other cognitive problems, including aphasias, as well as seizures or motor automatisms, but also rigidity, paresis, ataxia or dystonic / parkinsonian symptoms. Diagnosis including imaging and CSF search for antibodies needs to be fast, as progression of these inflammatory processes is often causing scarring of brain tissue, with hypergliosis and atrophy. As these symptoms show, the autoantibodies present in these cases appear to act within the CNS. Several of such antibodies have by now been identified such as IgG directed against NMDA-receptors, AMPA receptors, GABAA and GABAB receptors, and voltage gated potassium channels and proteins of the potassium channel complex (i.e. LGI1 and CASPR2). These are neuropil / surface antigens where antibody interaction can well be envisaged to cause dysfunction of the target protein, including internalization. Others, such as antibodies directed against GAD65 (an intracellular enzyme responsible for GABA-synthesis from glutamate), are discussed to constitute epiphenomena, but not causal agents in disease progression. This review will focus on the current knowledge of antibody interaction mechanisms, especially discussing cellular excitability changes and synaptic interactions in hippocampal and other brain networks. One challenge in this context is to find viable hypotheses for the emergence of both, hyperexcitability and seizures, and presumably reduced synaptic plasticity and underlying cognitive dysfunction.


Assuntos
Autoimunidade , Proteínas do Tecido Nervoso , Humanos , Proteínas do Tecido Nervoso/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Autoanticorpos , Convulsões , Ácido gama-Aminobutírico
4.
Hepatobiliary Pancreat Dis Int ; 22(2): 190-199, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36549966

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a disease of the elderly mostly because its development from preneoplastic lesions depends on the accumulation of gene mutations and epigenetic alterations over time. How aging of non-cancerous tissues of the host affects tumor progression, however, remains largely unknown. METHODS: We took advantage of a model of accelerated aging, uncoupling protein 2-deficient (Ucp2 knockout, Ucp2 KO) mice, to investigate the growth of orthotopically transplanted Ucp2 wild-type (WT) PDAC cells (cell lines Panc02 and 6606PDA) in vivo and to study strain-dependent differences of the PDAC microenvironment. RESULTS: Measurements of tumor weights and quantification of proliferating cells indicated a significant growth advantage of Panc02 and 6606PDA cells in WT mice compared to Ucp2 KO mice. In tumors in the knockout strain, higher levels of interferon-γ mRNA despite similar numbers of tumor-infiltrating T cells were observed. 6606PDA cells triggered a stronger stromal reaction in Ucp2 KO mice than in WT animals. Accordingly, pancreatic stellate cells from Ucp2 KO mice proliferated at a higher rate than cells of the WT strain when they were incubated with conditioned media from PDAC cells. CONCLUSIONS: Ucp2 modulates PDAC microenvironment in a way that favors tumor progression and implicates an altered stromal response as one of the underlying mechanisms.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Camundongos , Animais , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Camundongos Knockout , Microambiente Tumoral , Neoplasias Pancreáticas
5.
Neurobiol Dis ; 175: 105912, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36307031

RESUMO

During the last decades deep brain stimulation (DBS) has become an important treatment option for a variety of neurological disorders such as drug-intractable dystonia. Yet, the mechanisms of action of DBS are still largely unknown. Dystonia is a heterogenous movement disorder characterized by involuntary muscle contractions causing abnormal movements, postures, or both. The underlying pathophysiological processes remain unclear, but a dysfunction of the basal ganglia circuit is critically involved as supported by the effectiveness of DBS of the globus pallidus internus (GPi) in various types of dystonia. However, the degree of clinical improvement differs among the types of dystonia, as well as from patient to patient, and the delayed response to GPi-DBS in dystonia patients hampers the adjustment and optimization of stimulation parameters. Preclinical studies in suitable animal models can contribute decisively to detect the underlying mechanisms of DBS and biomarkers, to identify new possible stimulation targets and to optimize stimulation patterns. In this review, we give an overview of previous research on DBS in animal models of dystonia. With regard to the aims of research we discuss the opportunities and limitations concerning different available animal models of dystonia and technical challenges.


Assuntos
Estimulação Encefálica Profunda , Distonia , Distúrbios Distônicos , Animais , Distonia/terapia , Estimulação Encefálica Profunda/efeitos adversos , Globo Pálido , Modelos Animais , Resultado do Tratamento
6.
Biol Cybern ; 116(1): 93-116, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34894291

RESUMO

A large-scale computational model of the basal ganglia network and thalamus is proposed to describe movement disorders and treatment effects of deep brain stimulation (DBS). The model of this complex network considers three areas of the basal ganglia region: the subthalamic nucleus (STN) as target area of DBS, the globus pallidus, both pars externa and pars interna (GPe-GPi), and the thalamus. Parkinsonian conditions are simulated by assuming reduced dopaminergic input and corresponding pronounced inhibitory or disinhibited projections to GPe and GPi. Macroscopic quantities are derived which correlate closely to thalamic responses and hence motor programme fidelity. It can be demonstrated that depending on different levels of striatal projections to the GPe and GPi, the dynamics of these macroscopic quantities (synchronisation index, mean synaptic activity and response efficacy) switch from normal to Parkinsonian conditions. Simulating DBS of the STN affects the dynamics of the entire network, increasing the thalamic activity to levels close to normal, while differing from both normal and Parkinsonian dynamics. Using the mentioned macroscopic quantities, the model proposes optimal DBS frequency ranges above 130 Hz.


Assuntos
Estimulação Encefálica Profunda , Transtornos dos Movimentos , Núcleo Subtalâmico , Gânglios da Base/fisiologia , Globo Pálido , Humanos , Transtornos dos Movimentos/terapia , Núcleo Subtalâmico/fisiologia
7.
Neurobiol Dis ; 154: 105341, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33753292

RESUMO

Pallidal deep brain stimulation (DBS) is an important option for patients with severe dystonias, which are thought to arise from a disturbance in striatal control of the globus pallidus internus (GPi). The mechanisms of GPi-DBS are far from understood. Although a disturbance of striatal function is thought to play a key role in dystonia, the effects of DBS on cortico-striatal function are unknown. We hypothesised that DBS, via axonal backfiring, or indirectly via thalamic and cortical coupling, alters striatal function. We tested this hypothesis in the dtsz hamster, an animal model of inherited generalised, paroxysmal dystonia. Hamsters (dystonic and non-dystonic controls) were bilaterally implanted with stimulation electrodes in the GPi. DBS (130 Hz), and sham DBS, were performed in unanaesthetised animals for 3 h. Synaptic cortico-striatal field potentials, as well as miniature excitatory postsynaptic currents (mEPSC) and firing properties of medium spiny striatal neurones were recorded in brain slice preparations obtained immediately after EPN-DBS. The main findings were as follows: a. DBS increased cortico-striatal evoked responses in healthy, but not in dystonic tissue. b. Commensurate with this, DBS increased inhibitory control of these evoked responses in dystonic, and decreased inhibitory control in healthy tissue. c. Further, DBS reduced mEPSC frequency strongly in dystonic, and less prominently in healthy tissue, showing that also a modulation of presynaptic mechanisms is likely involved. d. Cellular properties of medium-spiny neurones remained unchanged. We conclude that DBS leads to dampening of cortico-striatal communication, and restores intrastriatal inhibitory tone.


Assuntos
Córtex Cerebral/fisiologia , Corpo Estriado/fisiologia , Estimulação Encefálica Profunda/métodos , Distonia/fisiopatologia , Globo Pálido/fisiologia , Sinapses/fisiologia , Animais , Animais Geneticamente Modificados , Comunicação Celular/fisiologia , Cricetinae , Estimulação Encefálica Profunda/instrumentação , Modelos Animais de Doenças , Distonia/terapia , Eletrodos Implantados , Potenciais Pós-Sinápticos Excitadores/fisiologia , Mesocricetus , Rede Nervosa/fisiologia
8.
Neurobiol Dis ; 147: 105163, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166698

RESUMO

Deep brain stimulation (DBS) of the globus pallidus internus (GPi, entopeduncular nucleus, EPN, in rodents) has become important for the treatment of generalized dystonia, a severe and often intractable movement disorder. It is unclear if lower frequencies of GPi-DBS or stimulations of the subthalamic nucleus (STN) are of advantage. In the present study, the main objective was to examined the effects of bilateral EPN-DBS at different frequencies (130 Hz, 40 Hz, 15 Hz) on the severity of dystonia in the dtsz mutant hamster. In addition, STN stimulations were done at a frequency, proven to be effective by the present EPN-DBS in dystonic hamsters. In order to obtain precise bilateral electrical stimuli with magnitude of 50 µA, a pulse width of 60 µs and defined frequencies, it was necessary to develop a new optimized stimulator prior to the experiments. Since the individual highest severity of dystonic episodes is known to be reached within three hours after induction in dtsz hamsters, the duration of DBS was 180 min. During DBS with 130 Hz the severity of dystonia was significantly lower within the third hour than without DBS in the same animals (p < 0.05). DBS with 40 Hz tended to exert antidystonic effects after three hours, while 15 Hz stimulations of the EPN and 130 Hz stimulations of the STN failed to show any effects on the severity. DBS of the EPN at 130 Hz was most effective against generalized dystonia in the dtsz mutant. The response to EPN-DBS confirms that the dtsz mutant is suitable to further investigate the effects of long-term DBS on severity of dystonia and neuronal network activities, important to give insights into the mechanisms of DBS.


Assuntos
Estimulação Encefálica Profunda/instrumentação , Estimulação Encefálica Profunda/métodos , Distonia , Animais , Cricetinae , Modelos Animais de Doenças , Núcleo Entopeduncular/fisiologia , Feminino , Masculino , Fenótipo , Núcleo Subtalâmico/fisiologia
9.
PLoS Comput Biol ; 16(7): e1008023, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32628719

RESUMO

In this study, we propose a new open-source simulation platform that comprises computer-aided design and computer-aided engineering tools for highly automated evaluation of electric field distribution and neural activation during Deep Brain Stimulation (DBS). It will be shown how a Volume Conductor Model (VCM) is constructed and examined using Python-controlled algorithms for generation, discretization and adaptive mesh refinement of the computational domain, as well as for incorporation of heterogeneous and anisotropic properties of the tissue and allocation of neuron models. The utilization of the platform is facilitated by a collection of predefined input setups and quick visualization routines. The accuracy of a VCM, created and optimized by the platform, was estimated by comparison with a commercial software. The results demonstrate no significant deviation between the models in the electric potential distribution. A qualitative estimation of different physics for the VCM shows an agreement with previous computational studies. The proposed computational platform is suitable for an accurate estimation of electric fields during DBS in scientific modeling studies. In future, we intend to acquire SDA and EMA approval. Successful incorporation of open-source software, controlled by in-house developed algorithms, provides a highly automated solution. The platform allows for optimization and uncertainty quantification (UQ) studies, while employment of the open-source software facilitates accessibility and reproducibility of simulations.


Assuntos
Encéfalo/fisiologia , Estimulação Encefálica Profunda , Reconhecimento Automatizado de Padrão , Software , Algoritmos , Anisotropia , Axônios/fisiologia , Mapeamento Encefálico , Simulação por Computador , Desenho Assistido por Computador , Análise de Fourier , Humanos , Processamento de Imagem Assistida por Computador , Modelos Neurológicos , Neurônios/fisiologia , Linguagens de Programação , Reprodutibilidade dos Testes
10.
Neurobiol Dis ; 143: 105018, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32682952

RESUMO

In addition to tissues such as liver, the plasma membrane sodium-dependent citrate transporter, NaCT (SLC13A5), is highly expressed in brain neurons, but its function is not understood. Loss-of-function mutations in the human SLC13A5 gene have been associated with severe neonatal encephalopathy and pharmacoresistant seizures. The molecular mechanisms of these neurological alterations are not clear. We performed a detailed examination of a Slc13a5 deletion mouse model including video-EEG monitoring, behavioral tests, and electrophysiologic, proteomic, and metabolomic analyses of brain and cerebrospinal fluid. The experiments revealed an increased propensity for epileptic seizures, proepileptogenic neuronal excitability changes in the hippocampus, and significant citrate alterations in the CSF and brain tissue of Slc13a5 deficient mice, which may underlie the neurological abnormalities. These data demonstrate that SLC13A5 is involved in brain citrate regulation and suggest that abnormalities in this regulation can induce seizures. The present study is the first to (i) establish the Slc13a5-knockout mouse model as a helpful tool to study the neuronal functions of NaCT and characterize the molecular mechanisms by which functional deficiency of this citrate transporter causes epilepsy and impairs neuronal function; (ii) evaluate all hypotheses that have previously been suggested on theoretical grounds to explain the neurological phenotype of SLC13A5 mutations; and (iii) indicate that alterations in brain citrate levels result in neuronal network excitability and increased seizure propensity.


Assuntos
Encéfalo/metabolismo , Ácido Cítrico/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Hipocampo/fisiopatologia , Convulsões/metabolismo , Simportadores/genética , Simportadores/metabolismo , Animais , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/metabolismo , Feminino , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Rede Nervosa/metabolismo , Rede Nervosa/fisiopatologia , Neurônios/metabolismo , Convulsões/genética
11.
Neurobiol Dis ; 112: 79-84, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29330041

RESUMO

Voltage-independent, Ca2+-activated K+ channels (KCa2.2, previously named SK2) are typically activated during a train of action potentials, and hence, are powerful regulators of cellular excitability by generating an afterhyperpolarizing potential (AHP) following prolonged excitation. In the acute in vitro epilepsy model induced in hippocampal brain slice preparations by exposure to the GABAA receptor blocker gabazine (GZ), the AHP was previously shown to be significantly decreased. Here, we asked the question whether KCa2.2 protein degradation occurs in this model and which pathways are involved. To this end, we applied either gabazine alone or gabazine together with inhibitors of proteasomal and lysosomal protein degradation pathways, Z-Leu-Leu-Leu-CHO (MG132) and chloroquine (CQ), respectively. Western blot analysis showed a significant decrease of total KCa2.2 protein content in GZ-treated slices which could be rescued by concomitant incubation with MG132 and CQ. Using HEK293 cells transfected with a green fluorescent protein-tagged KCa2.2 construct, we demonstrated that proteasomal rather than lysosomal degradation was involved in KCa2.2 reduction. We then recorded epileptiform afterdischarges at hippocampal Schaffer collateral-CA1 synapses and confirmed that the GZ-induced increase was significantly attenuated by both MG132 and CQ, with MG132 being significantly more effective than CQ. Epileptiform afterdischarges were almost prevented by co-application of protein degradation inhibitors. Furthermore, epileptiform afterdischarges could be re-established by using the KCa2.2 blocker UCL 1684 suggesting involvement of KCa2.2. We conclude that in GZ-induced acute epilepsy, KCa2.2 degradation by proteasomal rather than lysosomal pathways plays a major role in the generation of epileptiform afterdischarges.


Assuntos
Potenciais de Ação/fisiologia , Lisossomos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Piridazinas/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Antagonistas GABAérgicos/farmacologia , Células HEK293 , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Lisossomos/efeitos dos fármacos , Masculino , Técnicas de Cultura de Órgãos , Proteólise/efeitos dos fármacos , Ratos , Ratos Wistar
12.
Biochim Biophys Acta ; 1860(11 Pt B): 2706-15, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27456767

RESUMO

BACKGROUND: Aging is broadly considered to be a dynamic process that accumulates unfavourable structural and functional changes in a time dependent fashion, leading to a progressive loss of physiological integrity of an organism, which eventually leads to age-related diseases and finally to death. SCOPE OF REVIEW: The majority of aging-related studies are based on reductionist approaches, focusing on single genes/proteins or on individual pathways without considering possible interactions between them. Over the last few decades, several such genes/proteins were independently analysed and linked to a role that is affecting the longevity of an organism. However, an isolated analysis on genes and proteins largely fails to explain the mechanistic insight of a complex phenotype due to the involvement and integration of multiple factors. MAJOR CONCLUSIONS: Technological advance makes it possible to generate high-throughput temporal and spatial data that provide an opportunity to use computer-based methods. These techniques allow us to go beyond reductionist approaches to analyse large-scale networks that provide deeper understanding of the processes that drive aging. GENERAL SIGNIFICANCE: In this review, we focus on systems biology approaches, based on network inference methods to understand the dynamics of hallmark processes leading to aging phenotypes. We also describe computational methods for the interpretation and identification of important molecular hubs involved in the mechanistic linkage between aging related processes. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.


Assuntos
Envelhecimento/genética , Redes Reguladoras de Genes/genética , Animais , Humanos , Longevidade/genética , Fenótipo , Biologia de Sistemas
13.
Neural Plast ; 2017: 8087401, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29098091

RESUMO

Spatial learning and associating spatial information with individual experience are crucial for rodents and higher mammals. Hence, studying the cellular and molecular cascades involved in the key mechanism of information storage in the brain, synaptic plasticity, has led to enormous knowledge in this field. A major open question applies to the interdependence between synaptic plasticity and its behavioral correlates. In this context, it has become clear that behavioral aspects may impact subsequent synaptic plasticity, a phenomenon termed behavioral metaplasticity. Here, we trained control and pilocarpine-treated chronically epileptic rats of two different age groups (adolescent and adult) in a spatial memory task and subsequently tested long-term potentiation (LTP) in vitro at Schaffer collateral-CA1 synapses. As expected, memory acquisition in the behavioral task was significantly impaired both in pilocarpine-treated animals and in adult controls. Accordingly, these groups, without being tested in the behavioral training task, showed reduced CA1-LTP levels compared to untrained young controls. Spatial memory training significantly reduced subsequent CA1-LTP in vitro in the adolescent control group yet enhanced CA1-LTP in the adult pilocarpine-treated group. Such training in the adolescent pilocarpine-treated and adult control groups resulted in intermediate changes. Our study demonstrates age-dependent functional metaplasticity following a spatial memory training task and its reversal under pathological conditions.


Assuntos
Região CA1 Hipocampal/fisiopatologia , Epilepsia/fisiopatologia , Hipocampo/fisiopatologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Animais , Comportamento Animal/fisiologia , Epilepsia/induzido quimicamente , Potenciação de Longa Duração/fisiologia , Pilocarpina , Ratos , Ratos Wistar , Memória Espacial/fisiologia
14.
J Neurophysiol ; 115(6): 3229-37, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27075542

RESUMO

Low-voltage fast (LVF) and hypersynchronous (HYP) patterns are the seizure-onset patterns most frequently observed in intracranial EEG recordings from mesial temporal lobe epilepsy (MTLE) patients. Both patterns also occur in models of MTLE in vivo and in vitro, and these studies have highlighted the predominant involvement of distinct neuronal network/neurotransmitter receptor signaling in each of them. First, LVF-onset seizures in epileptic rodents can originate from several limbic structures, frequently spread, and are associated with high-frequency oscillations in the ripple band (80-200 Hz), whereas HYP onset seizures initiate in the hippocampus and tend to remain focal with predominant fast ripples (250-500 Hz). Second, in vitro intracellular recordings from principal cells in limbic areas indicate that pharmacologically induced seizure-like discharges with LVF onset are initiated by a synchronous inhibitory event or by a hyperpolarizing inhibitory postsynaptic potential barrage; in contrast, HYP onset is associated with a progressive impairment of inhibition and concomitant unrestrained enhancement of excitation. Finally, in vitro optogenetic experiments show that, under comparable experimental conditions (i.e., 4-aminopyridine application), the initiation of LVF- or HYP-onset seizures depends on the preponderant involvement of interneuronal or principal cell networks, respectively. Overall, these data may provide insight to delineate better therapeutic targets in the treatment of patients presenting with MTLE and, perhaps, with other epileptic disorders as well.


Assuntos
Ondas Encefálicas/fisiologia , Epilepsia do Lobo Temporal/fisiopatologia , Inibição Neural/fisiologia , Convulsões/fisiopatologia , Transdução de Sinais/fisiologia , Potenciais Sinápticos/fisiologia , Eletroencefalografia , Epilepsia do Lobo Temporal/patologia , Humanos
15.
Neurobiol Dis ; 87: 1-10, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26699817

RESUMO

We obtained field, K(+) selective and "sharp" intracellular recordings from the rat entorhinal (EC) and perirhinal (PC) cortices in an in vitro brain slice preparation to identify the events occurring at interictal-to-ictal transition during 4-aminopyridine application. Field recordings revealed interictal- (duration: 1.1 to 2.2s) and ictal-like (duration: 31 to 103s) activity occurring synchronously in EC and PC; in addition, interictal spiking in PC increased in frequency shortly before the onset of ictal oscillatory activity thus resembling the hypersynchronous seizure onset seen in epileptic patients and in in vivo animal models. Intracellular recordings with K-acetate+QX314-filled pipettes in PC principal cells showed that spikes at ictal onset had post-burst hyperpolarizations (presumably mediated by postsynaptic GABAA receptors), which gradually decreased in amplitude. This trend was associated with a progressive positive shift of the post-burst hyperpolarization reversal potential. Finally, the transient elevations in [K(+)]o (up to 4.4mM from a base line of 3.2mM) - which occurred with the interictal events in PC - progressively increased (up to 7.3mM) with the spike immediately preceding ictal onset. Our findings indicate that hypersynchronous seizure onset in rat PC is caused by dynamic weakening of GABAA receptor signaling presumably resulting from [K(+)]o accumulation.


Assuntos
Córtex Cerebral/fisiopatologia , Convulsões/fisiopatologia , 4-Aminopiridina , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Cátions Monovalentes/metabolismo , Córtex Cerebral/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas GABAérgicos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Periodicidade , Ácidos Fosfínicos/farmacologia , Picrotoxina/farmacologia , Piperazinas/farmacologia , Potássio/metabolismo , Propanolaminas/farmacologia , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Receptores de GABA-B/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsões/tratamento farmacológico , Técnicas de Cultura de Tecidos
16.
Epilepsy Behav ; 57(Pt A): 90-94, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26926072

RESUMO

Interictal spike activity is commonly observed in the EEG of patients with epilepsy, but the causal interrelationship between interictal spikes and behavioral seizures is poorly understood. We performed long-term video-EEG monitoring of 16 epileptic rats after pilocarpine-induced status epilepticus and five control animals. To quantify the interplay between periods of spikes and seizures, we calculated the time spent with spikes as well as the time spent with seizures for each animal. Within a given subject, we found a significant correlation between these two measures in 7/11 young epileptic rats (<400 days); this correlation was positive in six cases and negative in one. By contrast, none of five aged pilocarpine-treated animals exhibited significant correlation coefficients between spike periods and seizures (>600 days, P<0.05). Instead, aged epileptic rats showed a prominent predominance for either spike periods or seizures, which might explain the absence of significant correlation in this population. We found that there is a significant interplay between interictal periods of spikes and behavioral seizures in young epileptic animals, but this association is absent during aging.


Assuntos
Anticonvulsivantes/farmacologia , Epilepsia/induzido quimicamente , Pilocarpina/farmacologia , Convulsões/induzido quimicamente , Fatores Etários , Animais , Eletroencefalografia , Feminino , Humanos , Masculino , Periodicidade , Pilocarpina/efeitos adversos , Ratos , Ratos Sprague-Dawley , Estado Epiléptico/induzido quimicamente , Fatores de Tempo , Gravação em Vídeo
17.
Acta Pharmacol Sin ; 37(5): 617-28, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27018177

RESUMO

AIM: Purinergic signaling plays a major role in the enteric nervous system, where it governs gut motility through a number of P2X and P2Y receptors. The aim of this study was to investigate the P2Y receptor-mediated motility in rat longitudinal ileum preparations. METHODS: Ileum smooth muscle strips were prepared from rats, and fixed in an organ bath. Isometric contraction and relaxation responses of the muscle strips were measured with force transducers. Drugs were applied by adding of stock solutions to the organ bath to yield the individual final concentrations. RESULTS: Application of the non-hydrolyzable P2 receptor agonists α,ß-Me-ATP or 2-Me-S-ADP (10, 100 µmol/L) dose-dependently elicited a transient relaxation response followed by a sustained contraction. The relaxation response was largely blocked by SK channel blockers apamin (500 nmol/L) and UCL1684 (10 µmol/L), PLC inhibitor U73122 (100 µmol/L), IP3 receptor blocker 2-APB (100 µmol/L) or sarcoendoplasmic Ca(2+) ATPase inhibitor thapsigargin (1 µmol/L), but not affected by atropine, NO synthase blocker L-NAME or tetrodotoxin. Furthermore, α,ß-Me-ATP-induced relaxation was suppressed by P2Y1 receptor antagonist MRS2179 (50 µmol/L) or P2Y13 receptor antagonist MRS2211 (100 µmol/L), and was abolished by co-application of the two antagonists, whereas 2-Me-S-ADP-induced relaxation was abolished by P2Y6 receptor antagonist MRS2578 (50 µmol/L). In addition, P2Y1 receptor antagonist MRS2500 (1 µmol/L) not only abolished α,ß-Me-ATP-induced relaxation, but also suppressed 2-Me-S-ADP-induced relaxation. CONCLUSION: P2Y receptor agonist-induced transient relaxation of rat ileum smooth muscle strips is mediated predominantly by P2Y1 receptor, but also by P2Y6 and P2Y13 receptors, and involves PLC, IP3, Ca(2+) release and SK channel activation, but is independent of acetylcholine and NO release.


Assuntos
Cálcio/metabolismo , Íleo/fisiologia , Músculo Liso Vascular/fisiologia , Receptores Purinérgicos P2Y/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Fosfolipases Tipo C/metabolismo , Animais , Ativação Enzimática , Técnicas In Vitro , Espaço Intracelular/metabolismo , Contração Isométrica , Masculino , Relaxamento Muscular , Agonistas do Receptor Purinérgico P2Y/farmacologia , Ratos Sprague-Dawley
18.
Gerontology ; 62(4): 409-16, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26675034

RESUMO

Research into ageing and its underlying molecular basis enables us to develop and implement targeted interventions to ameliorate or cure its consequences. However, the efficacy of interventions often differs widely between individuals, suggesting that populations should be stratified or even individualized. Large-scale cohort studies in humans, similar systematic studies in model organisms as well as detailed investigations into the biology of ageing can provide individual validated biomarkers and mechanisms, leading to recommendations for targeted interventions. Human cohort studies are already ongoing, and they can be supplemented by in silico simulations. Systematic studies in animal models are made possible by the use of inbred strains or genetic reference populations of mice. Combining the two, a comprehensive picture of the various determinants of ageing and 'health span' can be studied in detail, and an appreciation of the relevance of results from model organisms to humans is emerging. The interactions between genotype and environment, particularly the psychosocial environment, are poorly studied in both humans and model organisms, presenting serious challenges to any approach to a personalized medicine of ageing. To increase the success of preventive interventions, we argue that there is a pressing need for an individualized evaluation of interventions such as physical exercise, nutrition, nutraceuticals and calorie restriction mimetics as well as psychosocial and environmental factors, separately and in combination. The expected extension of the health span enables us to refocus health care spending on individual prevention, starting in late adulthood, and on the brief period of morbidity at very old age.


Assuntos
Envelhecimento , Envelhecimento Saudável , Medicina de Precisão/tendências , Animais , Biologia Computacional , Humanos , Longevidade , Camundongos , Modelos Animais
19.
Neural Plast ; 2016: 6592038, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26881126

RESUMO

N-Methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP) can be reversed by low-frequency stimulation (LFS) referred to as depotentiation (DP). We previously found GluN2B upregulated in CA1 neurons from post-status epilepticus (post-SE) tissue associated with an enhanced LTP. Here, we tested whether LFS-induced DP is also altered in pathological GluN2B upregulation. Although LTP was enhanced in post-SE tissue, LTP was significantly reversed in this tissue, but not in controls. We next tested the effect of the GluN2B subunit-specific blocker Ro 25-6981 (1 µM) on LFS-DP. As expected, LFS had no effect on synaptic strength in the presence of the GluN2B blocker in control tissue. In marked contrast, LFS-DP was also attained in post-SE tissue indicating that GluN2B was obviously not involved in depotentiation. To test for NMDA receptor-dependence, we applied the NMDA receptor antagonist D-AP5 (50 µM) prior to LFS and observed that DP was abolished in both control and post-SE tissue confirming NMDA receptor involvement. These results indicate that control Schaffer collateral-CA1 synapses cannot be depotentiated after fully established LTP, but LFS was able to reverse LTP significantly in post-SE tissue. However, while LFS-DP clearly required NMDA receptor activation, GluN2B-containing NMDA receptors were not involved in this form of depotentiation.


Assuntos
Hipocampo/fisiopatologia , Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo , Receptores de N-Metil-D-Aspartato/fisiologia , Estado Epiléptico/fisiopatologia , Animais , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Fenóis/administração & dosagem , Pilocarpina , Piperidinas/administração & dosagem , Ratos Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Estado Epiléptico/induzido quimicamente , Regulação para Cima
20.
BMC Urol ; 15: 104, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26468005

RESUMO

BACKGROUND: Rho kinase (ROCK) and myosin-light chain kinase (MLCK) are key enzymes in smooth muscle contraction. Previous data have suggested that ROCK contribution to human detrusor contraction is increasing with age. Here, we have analyzed the transcriptional expression of Rho kinase isoforms (ROCK1 and ROCK2) as well as MLCK in the aging human detrusor smooth muscle obtained from resected tissue. METHODS: Small pieces of macroscopically healthy human detrusor smooth muscle (urothelium-free) were prepared for quantitative real-time reverse transcriptase polymerase chain reaction (RT-PCR). Transcript expression (mRNA level) of the target genes ROCK1, ROCK2 and MLCK was normalized to three common reference genes (glyceraldehyde-3-phosphate dehydrogenase, ß-actin, phosphoglycerate kinase 1). RESULTS: We found that across all ages the expression level of ROCK (i.e. ROCK1 and ROCK2 together) was almost equal to that of MLCK in the human bladder. Further, ROCK2 showed a significantly higher expression level than ROCK1. Among all subjects, there was no significant correlation of any single target gene to age, but expression levels of ROCK and MLCK were inversely correlated. Moreover, the within-subject analysis revealed that the ROCK-to-MLCK ratio showed a significantly negative correlation to age. Thus, within a given subject, there is a relative ROCK down-regulation and concomitant MLCK up-regulation. CONCLUSIONS: Together with previous data in human detrusor specimens showing increased ROCK contribution to detrusor contraction, we speculate that the drop of the ROCK-to-MLCK ratio may occur as an attempt to compensate for the increased Rho kinase activity.


Assuntos
Envelhecimento/metabolismo , Músculo Liso/enzimologia , Bexiga Urinária/enzimologia , Quinases Associadas a rho/metabolismo , Idoso , Idoso de 80 Anos ou mais , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa