Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Basic Res Cardiol ; 117(1): 13, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260914

RESUMO

Cancer therapies with anthracyclines have been shown to induce cardiovascular complications. The aims of this study were to establish an in vitro induced pluripotent stem cell model (iPSC) of anthracycline-induced cardiotoxicity (ACT) from patients with an aggressive form of B-cell lymphoma and to examine whether doxorubicin (DOX)-treated ACT-iPSC cardiomyocytes (CM) can recapitulate the clinical features exhibited by patients, and thus help uncover a DOX-dependent pathomechanism. ACT-iPSC CM generated from individuals with CD20+ B-cell lymphoma who had received high doses of DOX and suffered cardiac dysfunction were studied and compared to control-iPSC CM from cancer survivors without cardiac symptoms. In cellular studies, ACT-iPSC CM were persistently more susceptible to DOX toxicity including augmented disorganized myofilament structure, changed mitochondrial shape, and increased apoptotic events. Consistently, ACT-iPSC CM and cardiac fibroblasts isolated from fibrotic human ACT myocardium exhibited higher DOX-dependent reactive oxygen species. In functional studies, Ca2+ transient amplitude of ACT-iPSC CM was reduced compared to control cells, and diastolic sarcoplasmic reticulum Ca2+ leak was DOX-dependently increased. This could be explained by overactive CaMKIIδ in ACT CM. Together with DOX-dependent augmented proarrhythmic cellular triggers and prolonged action potentials in ACT CM, this suggests a cellular link to arrhythmogenic events and contractile dysfunction especially found in ACT engineered human myocardium. CamKIIδ inhibition prevented proarrhythmic triggers in ACT. In contrast, control CM upregulated SERCA2a expression in a DOX-dependent manner, possibly to avoid heart failure conditions. In conclusion, we developed the first human patient-specific stem cell model of DOX-induced cardiac dysfunction from patients with B-cell lymphoma. Our results suggest that DOX-induced stress resulted in arrhythmogenic events associated with contractile dysfunction and finally in heart failure after persistent stress activation in ACT patients.


Assuntos
Cardiopatias , Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Linfoma de Células B , Neoplasias , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Doxorrubicina/metabolismo , Doxorrubicina/toxicidade , Cardiopatias/metabolismo , Insuficiência Cardíaca/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Miócitos Cardíacos/metabolismo , Neoplasias/metabolismo
2.
Stem Cell Res ; 77: 103409, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583294

RESUMO

Filamin C (FLNC) is a highly important actin crosslinker and multi-adaptor protein in striated skeletal and cardiac muscle. Mutations have been linked to a range of cardiomyopathy types. Here, we generated induced pluripotent stem cells (iPSC) from a patient with dilated cardiomyopathy (DCM) harboring a new, unique heterozygous FLNC mutation p.R2187P. From this patient-specific iPSC line, a corresponding isogenic control line was created by CRISPR/Cas9 genome editing. Both, the patient-specific and isogenic-control iPSC maintained full pluripotency, genomic integrity, and in vitro differentiation capacity. All iPSC lines differentiate into iPSC-cardiomyocytes, hence providing the possibility to study the pathogenesis of FLNC-mediated DCM further.


Assuntos
Sistemas CRISPR-Cas , Cardiomiopatia Dilatada , Filaminas , Células-Tronco Pluripotentes Induzidas , Humanos , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Sistemas CRISPR-Cas/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Filaminas/genética , Filaminas/metabolismo , Mutação , Diferenciação Celular , Linhagem Celular , Masculino
3.
Stem Cells Int ; 2019: 2181437, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31467559

RESUMO

Induced pluripotent stem cells (iPSCs) provide a unique opportunity for generation of patient-specific cells for use in translational purposes. We aimed to compare iPSCs generated by different reprogramming methods regarding their reprogramming efficiency, pluripotency capacity, and the possibility to use high-throughput PCR-based methods for detection of human pathogenic viruses. iPSCs from skin fibroblasts (FB), peripheral blood mononuclear cells (PBMCs), or mesenchymal stem cells (MSCs) were generated by using three different reprogramming systems including chromosomal integrating and nonintegrating methods. Reprogramming efficiencies were in accordance with the literature, indicating that the parental cell type and the reprogramming method play a major role for the reprogramming efficiencies (FB: STEMCCA: 1.30 ± 0.18, Sendai virus: 1.37 ± 0.01, and episomal plasmids: 0.04 ± 0.02; PBMCs: Sendai virus: 0.002 ± 0.001, episomal plasmids: 0) but result in the same characteristics of pluripotency. We found the highest reprogramming efficiencies for MSC with 3.32 ± 1.2 by using episomal plasmids. Since GMP standard working procedures and screening units need virus contamination-free cell lines, we studied HIV-1 contamination in the generated iPSCs. We used the high-throughput cobas® 6800/8800 system, which is normally used for detection of HIV-1 in plasma of patients, and found that footprint-free reprogramming methods as episomal plasmids and Sendai virus are useful for the described virus detection method. This fast, cost-effective, robust, and reliable assay demonstrates the feasibility to use high-throughput PCR-based methods for detection of human pathogenic viruses in ps-iPSC lines that were generated with nongenome integrating reprogramming methods.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa