Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 296: 100499, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33667547

RESUMO

Human PrP (huPrP) is a high-affinity receptor for oligomeric amyloid ß (Aß) protein aggregates. Binding of Aß oligomers to membrane-anchored huPrP has been suggested to trigger neurotoxic cell signaling in Alzheimer's disease, while an N-terminal soluble fragment of huPrP can sequester Aß oligomers and reduce their toxicity. Synthetic oligomeric Aß species are known to be heterogeneous, dynamic, and transient, rendering their structural investigation particularly challenging. Here, using huPrP to preserve Aß oligomers by coprecipitating them into large heteroassemblies, we investigated the conformations of Aß(1-42) oligomers and huPrP in the complex by solid-state MAS NMR spectroscopy. The disordered N-terminal region of huPrP becomes immobilized in the complex and therefore visible in dipolar spectra without adopting chemical shifts characteristic of a regular secondary structure. Most of the well-defined C-terminal part of huPrP is part of the rigid complex, and solid-state NMR spectra suggest a loss in regular secondary structure in the two C-terminal α-helices. For Aß(1-42) oligomers in complex with huPrP, secondary chemical shifts reveal substantial ß-strand content. Importantly, not all Aß(1-42) molecules within the complex have identical conformations. Comparison with the chemical shifts of synthetic Aß fibrils suggests that the Aß oligomer preparation represents a heterogeneous mixture of ß-strand-rich assemblies, of which some have the potential to evolve and elongate into different fibril polymorphs, reflecting a general propensity of Aß to adopt variable ß-strand-rich conformers. Taken together, our results reveal structural changes in huPrP upon binding to Aß oligomers that suggest a role of the C terminus of huPrP in cell signaling. Trapping Aß(1-42) oligomers by binding to huPrP has proved to be a useful tool for studying the structure of these highly heterogeneous ß-strand-rich assemblies.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Amiloide/química , Proteínas Priônicas/química , Doença de Alzheimer/patologia , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Linhagem Celular , Humanos , Espectroscopia de Ressonância Magnética/métodos , Proteínas Priônicas/metabolismo , Multimerização Proteica , Estrutura Secundária de Proteína , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa