Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 91(20): 12653-12660, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31525032

RESUMO

This work demonstrates the role of lattice oxygen of metal oxide catalysts in the oxygen evolution reaction (OER) as evidenced by isotope labeling together with the differential electrochemical mass spectrometry (DEMS) method. Our recent report assessed this role for Co3O4 using a flow-through DEMS cell, which requires a large volume of electrolyte. Herein, we extend this procedure to different Co3O4 catalyst loadings and particle sizes as well as the mixed Ag + Co3O4 catalyst. We introduce, for the first time, a novel small-volume DEMS cell design capable of using disc electrodes and only <0.5 mL of electrolyte. The reliability of the cell is demonstrated by monitoring gas evolution during OER in real time. This cell shows high sensitivity, high collection efficiency, and very short delay time. DEMS results reveal that only the interfacial part (∼0.2% of the total loading or 25% of surface atoms) of the catalyst is active for OER. Interestingly, the amount of oxygen exchanged on the mixed Ag + Co3O4 catalyst is higher than that on the single Co3O4 catalyst, which illustrates the improved electrocatalytic activity previously reported on this mixed catalyst. Furthermore, the real surface area of the catalysts is estimated using different methods (namely, the ball model, double layer capacitance, isotope exchange, and redox peak methods). The surface areas estimated from the Brunauer-Emmett-Teller (BET) and ball models are comparable but roughly three times higher than that of the redox peak method. Our method represents an alternative approach for probing the mechanism and real surface area of catalysts.

2.
J Phys Chem B ; 116(7): 2223-33, 2012 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-22272761

RESUMO

The first-ever femtosecond pump-probe study is reported on solvated electrons that were generated by multiphoton ionization of neat fluid ammonia. The initial ultrafast ionization was carried out with 266 nm laser pulses and was found to require two photons. The solvated electron was detected with a femtosecond probe pulse that was resonant with its characteristic near-infrared absorption band around 1.7 µm. Furthermore, the geminate recombination dynamics of the solvated electron were studied over wide ranges of temperature (227 K ≤ T ≤ 489 K) and density (0.17 g cm(-3) ≤ ρ ≤ 0.71 g cm(-3)), thereby covering the liquid and the supercritical phase of the solvent. The electron recombines in a first step with ammonium cations originating from the initial two-photon ionization thereby forming transient ion-pairs (e(am)(-)·NH(4)(+)), which subsequently react in a second step with amidogen radicals to reform neutral ammonia. The escape probability, i.e., the fraction of solvated electrons that can avoid the geminate annihilation, was found to be in quantitative agreement with the classical Onsager theory for the initial recombination of ions. When taking the sequential nature of the ion-pair-mediated recombination mechanism explicitly into account, the Onsager model provides a mean thermalization distance of 6.6 nm for the solvated electron, which strongly suggests that the ionization mechanism involves the conduction band of the fluid.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa