RESUMO
Bone marrow (BM) fibrosis in myeloproliferative neoplasms (MPNs) is associated with a poor prognosis. The development of myelofibrosis and differentiation of mesenchymal stromal cells to profibrotic myofibroblasts depends on macrophages. Here, we compared macrophage frequencies in BM biopsies of MPN patients and controls (patients with non-neoplastic processes), including primary myelofibrosis (PMF, n = 18), essential thrombocythemia (ET, n = 14), polycythemia vera (PV, n = 12), and Philadelphia chromosome-positive chronic myeloid leukemia (CML, n = 9). In PMF, CD68-positive macrophages were greatly increased compared to CML (p = 0.017) and control BM (p < 0.001). Similar findings were observed by CD163 staining (PMF vs. CML: p = 0.017; PMF vs. control: p < 0.001). Moreover, CD68-positive macrophages were increased in PV compared with ET (p = 0.009) and reactive cases (p < 0.001). PMF had higher frequencies of macrophages than PV (CD68: p < 0.001; CD163: p < 0.001) and ET (CD68: p < 0.001; CD163: p < 0.001). CD163 and CD68 were often co-expressed in macrophages with stellate morphology in Philadelphia chromosome-negative MPN, resulting in a sponge-like reticular network that may be a key regulator of unbalanced hematopoiesis in the BM space and may explain differences in cellularity and clinical course.
Assuntos
Medula Óssea/patologia , Macrófagos/patologia , Transtornos Mieloproliferativos/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Humanos , Pessoa de Meia-Idade , Gradação de Tumores/métodos , Policitemia Vera/patologia , Mielofibrose Primária/patologia , Trombocitemia Essencial/patologia , Adulto JovemRESUMO
Bone marrow fibrosis in myeloproliferative neoplasm (MPN), myelodysplastic syndromes (MDS), MPN/MDS overlap syndromes and acute myeloid leukemia (AML) is associated with poor prognosis and early treatment failure. Myelofibrosis (MF) is accompanied by reprogramming of multipotent bone marrow mesenchymal stromal cells (MSC) into osteoid and fiber-producing stromal cells. We demonstrate NRP2 and osteolineage marker NCAM1 (neural cell adhesion molecule 1) expression within the endosteal niche in normal bone marrow and aberrantly in MPN, MDS MPN/MDS overlap syndromes and AML (n = 99), as assessed by immunohistochemistry. Increased and diffuse expression in mesenchymal stromal cells and osteoblasts correlates with high MF grade in MPN (p < 0.05 for NRP2 and NCAM1). Single cell RNA sequencing (scRNAseq) re-analysis demonstrated NRP2 expression in endothelial cells and partial co-expression of NRP2 and NCAM1 in normal MSC and osteoblasts. Potential ligands included transforming growth factor ß1 (TGFB1) from osteoblasts and megakaryocytes. Murine ThPO and JAK2V617F myelofibrosis models showed co-expression of Nrp2 and Ncam1 in osteolineage cells, while fibrosis-promoting MSC only express Nrp2. In vitro experiments with MC3T3-E1 pre-osteoblasts and analysis of Nrp2-/- mouse femurs suggest that Nrp2 is functionally involved in osteogenesis. In summary, NRP2 represents a potential novel druggable target in patients with myelofibrosis.