Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
J Neurosci ; 44(9)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38262723

RESUMO

Deviance detection describes an increase of neural response strength caused by a stimulus with a low probability of occurrence. This ubiquitous phenomenon has been reported for humans and multiple other species, from subthalamic areas to the auditory cortex. Cortical deviance detection has been well characterized by a range of studies using a variety of different stimuli, from artificial to natural, with and without a behavioral relevance. This allowed the identification of a broad variety of regularity deviations that are detected by the cortex. Moreover, subcortical deviance detection has been studied with simple stimuli that are not meaningful to the subject. Here, we aim to bridge this gap by using noninvasively recorded auditory brainstem responses (ABRs) to investigate deviance detection at population level in the lower stations of the auditory system of a highly vocal species: the bat Carollia perspicillata (of either sex). Our present approach uses behaviorally relevant vocalization stimuli that are similar to the animals' natural soundscape. We show that deviance detection in ABRs is significantly stronger for echolocation pulses than for social communication calls or artificial sounds, indicating that subthalamic deviance detection depends on the behavioral meaning of a stimulus. Additionally, complex physical sound features like frequency- and amplitude modulation affected the strength of deviance detection in the ABR. In summary, our results suggest that the brain can detect different types of deviants already in the brainstem, showing that subthalamic brain structures exhibit more advanced forms of deviance detection than previously known.


Assuntos
Quirópteros , Animais , Humanos , Estimulação Acústica/métodos , Tronco Encefálico/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico , Som , Percepção Auditiva/fisiologia
2.
J Neurosci ; 41(50): 10261-10277, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34750226

RESUMO

Sound discrimination is essential in many species for communicating and foraging. Bats, for example, use sounds for echolocation and communication. In the bat auditory cortex there are neurons that process both sound categories, but how these neurons respond to acoustic transitions, that is, echolocation streams followed by a communication sound, remains unknown. Here, we show that the acoustic context, a leading sound sequence followed by a target sound, changes neuronal discriminability of echolocation versus communication calls in the cortex of awake bats of both sexes. Nonselective neurons that fire equally well to both echolocation and communication calls in the absence of context become category selective when leading context is present. On the contrary, neurons that prefer communication sounds in the absence of context turn into nonselective ones when context is added. The presence of context leads to an overall response suppression, but the strength of this suppression is stimulus specific. Suppression is strongest when context and target sounds belong to the same category, e.g.,echolocation followed by echolocation. A neuron model of stimulus-specific adaptation replicated our results in silico The model predicts selectivity to communication and echolocation sounds in the inputs arriving to the auditory cortex, as well as two forms of adaptation, presynaptic frequency-specific adaptation acting in cortical inputs and stimulus-unspecific postsynaptic adaptation. In addition, the model predicted that context effects can last up to 1.5 s after context offset and that synaptic inputs tuned to low-frequency sounds (communication signals) have the shortest decay constant of presynaptic adaptation.SIGNIFICANCE STATEMENT We studied cortical responses to isolated calls and call mixtures in awake bats and show that (1) two neuronal populations coexist in the bat cortex, including neurons that discriminate social from echolocation sounds well and neurons that are equally driven by these two ethologically different sound types; (2) acoustic context (i.e., other natural sounds preceding the target sound) affects natural sound selectivity in a manner that could not be predicted based on responses to isolated sounds; and (3) a computational model similar to those used for explaining stimulus-specific adaptation in rodents can account for the responses observed in the bat cortex to natural sounds. This model depends on segregated feedforward inputs, synaptic depression, and postsynaptic neuronal adaptation.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Quirópteros/fisiologia , Ecolocação/fisiologia , Neurônios/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Feminino , Masculino , Modelos Neurológicos
3.
Eur J Neurosci ; 55(6): 1601-1613, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34766394

RESUMO

Identifying unexpected acoustic inputs, which allows to react appropriately to new situations, is of major importance for animals. Neural deviance detection describes a change of neural response strength to a stimulus solely caused by the stimulus' probability of occurrence. In the present study, we searched for correlates of deviance detection in auditory brainstem responses obtained in anaesthetised bats (Carollia perspicillata). In an oddball paradigm, we used two pure tone stimuli that represented the main frequencies used by the animal during echolocation (60 kHz) and communication (20 kHz). For both stimuli, we could demonstrate significant differences of response strength between deviant and standard response in slow and fast components of the auditory brainstem response. The data suggest the presence of correlates of deviance detection in brain stations below the inferior colliculus (IC), at the level of the cochlea nucleus and lateral lemniscus. Additionally, our results suggest that deviance detection is mainly driven by repetition suppression in the echolocation frequency band, while in the communication band, a deviant-related enhancement of the response plays a more important role. This finding suggests a contextual dependence of the mechanisms underlying subcortical deviance detection. The present study demonstrates the value of auditory brainstem responses for studying deviance detection and suggests that auditory specialists, such as bats, use different frequency-specific strategies to ensure an appropriate sensation of unexpected sounds.


Assuntos
Córtex Auditivo , Quirópteros , Colículos Inferiores , Estimulação Acústica , Animais , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Potenciais Evocados Auditivos/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico , Colículos Inferiores/fisiologia
4.
Eur J Neurosci ; 55(11-12): 3483-3501, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-32979875

RESUMO

Neural oscillations are at the core of important computations in the mammalian brain. Interactions between oscillatory activities in different frequency bands, such as delta (1-4 Hz), theta (4-8 Hz) or gamma (>30 Hz), are a powerful mechanism for binding fundamentally distinct spatiotemporal scales of neural processing. Phase-amplitude coupling (PAC) is one such plausible and well-described interaction, but much is yet to be uncovered regarding how PAC dynamics contribute to sensory representations. In particular, although PAC appears to have a major role in audition, the characteristics of coupling profiles in sensory and integration (i.e. frontal) cortical areas remain obscure. Here, we address this question by studying PAC dynamics in the frontal-auditory field (FAF; an auditory area in the bat frontal cortex) and the auditory cortex (AC) of the bat Carollia perspicillata. By means of simultaneous electrophysiological recordings in frontal and auditory cortices examining local-field potentials (LFPs), we show that the amplitude of gamma-band activity couples with the phase of low-frequency LFPs in both structures. Our results demonstrate that the coupling in FAF occurs most prominently in delta/high-gamma frequencies (1-4/75-100 Hz), whereas in the AC the coupling is strongest in the delta-theta/low-gamma (2-8/25-55 Hz) range. We argue that distinct PAC profiles may represent different mechanisms for neuronal processing in frontal and auditory cortices, and might complement oscillatory interactions for sensory processing in the frontal-auditory cortex network.


Assuntos
Córtex Auditivo , Ondas Encefálicas , Quirópteros , Animais , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Encéfalo , Ondas Encefálicas/fisiologia
5.
J Exp Biol ; 224(Pt 6)2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33568443

RESUMO

Animals extract behaviorally relevant signals from 'noisy' environments. Echolocation behavior provides a rich system testbed for investigating signal extraction. When echolocating in acoustically enriched environments, bats show many adaptations that are believed to facilitate signal extraction. Most studies to date focused on describing adaptations in insectivorous bats while frugivorous bats have rarely been tested. Here, we characterize how the frugivorous bat Carollia perspicillata adapts its echolocation behavior in response to acoustic playback. Since bats not only adapt their echolocation calls in response to acoustic interference but also with respect to target distances, we swung bats on a pendulum to control for distance-dependent call changes. Forward swings evoked consistent echolocation behavior similar to approach flights. By comparing the echolocation behavior recorded in the presence and absence of acoustic playback, we could precisely define the influence of the acoustic context on the bats' vocal behavior. Our results show that C. perspicillata decrease the terminal peak frequencies of their calls when echolocating in the presence of acoustic playback. When considering the results at an individual level, it became clear that each bat dynamically adjusts different echolocation parameters across and even within experimental days. Utilizing such dynamics, bats create unique echolocation streams that could facilitate signal extraction in noisy environments.


Assuntos
Quirópteros , Ecolocação , Acústica , Adaptação Fisiológica , Animais
6.
Artigo em Inglês | MEDLINE | ID: mdl-31853637

RESUMO

An objective method to evaluate auditory brainstem-evoked responses (ABR) based on the root-mean-square (rms) amplitude of the measured signal and bootstrapping procedures was used to determine threshold curves (see Lv et al. in Med Eng Phys 29:191-198, 2007; Linnenschmidt and Wiegrebe in Hear Res 373:85-95, 2019). The rms values and their significance for threshold determination depended strongly on the filtering of the signal. Using the minimum threshold values obtained at three different low-frequency filter corner frequencies (30, 100, 300 Hz), ABR threshold curves were calculated. The course of the ABR thresholds was comparable to that of published DPOAE (distortion-product otoacoustic emission) thresholds based on a - 10 dB SPL threshold criterion for the 2f1-f2 emission (Schlenther et al. in J Assoc Res Otolaryngol 15:695-705, 2014, frequency range 10-90 kHz). For frequencies between 20 and 80 kHz, which is the most sensitive part of the bat's audiogram, median thresholds ranged between 10 and 28 dB SPL, and the DPOAE thresholds ranged between 10 and 23 dB SPL. At frequencies below 20 kHz (5-20 kHz) and above 80 kHz (80-120 kHz), ABR thresholds increased by 20 dB/octave and 45 dB/octave, respectively. We conclude that the combination of objective threshold determination and multiple filtering of the signal gives reliable ABR thresholds comparable to cochlear threshold curves.


Assuntos
Quirópteros/fisiologia , Cóclea/fisiologia , Estimulação Acústica/métodos , Animais , Limiar Auditivo/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Feminino , Masculino , Emissões Otoacústicas Espontâneas/fisiologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-30997534

RESUMO

Echolocating bats emit biosonar calls and use echoes arising from call reflections, for orientation. They often pattern their calls into groups which increases the rate of sensory feedback. Insectivorous bats emit call groups at a higher rate when orienting in cluttered compared to uncluttered environments. Frugivorous bats increase the rate of call group emission when they echolocate in noisy environments. In frugivorous bats, it remains unclear if call group emission represents an exclusive adaptation to avoid acoustic interference by signals of conspecifics or if it represents an adaptation that allows to orient under demanding environmental conditions. Here, we compared the emission pattern of the frugivorous bat Carolliaperspicillata when the bats were flying in narrow versus wide or cluttered versus non-cluttered corridors. The bats emitted larger call groups and they increased the call rate within call groups when navigating in narrow or cluttered environments. These adaptations resemble the ones shown when the bats navigate in noisy environments. Thus, call group emission represents an adaptive behavior when the bats orient in complex environments.


Assuntos
Adaptação Fisiológica/fisiologia , Quirópteros/fisiologia , Ecolocação/fisiologia , Animais
8.
J Neurosci ; 36(8): 2377-82, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26911686

RESUMO

Mechanoelectrical transduction of acoustic signals is the fundamental process for hearing in all ears across the animal kingdom. Here, we performed in vivo laser-vibrometric and electrophysiological measurements at the transduction site in an insect ear (Mecopoda elongata) to relate the biomechanical tonotopy along the hearing organ to the frequency tuning of the corresponding sensory cells. Our mechanical and electrophysiological map revealed a biomechanical filter process that considerably sharpens the neuronal response. We demonstrate that the channel gating, which acts on chordotonal stretch receptor neurons, is based on a mechanical directionality of the sound-induced motion. Further, anatomical studies of the transduction site support our finding of a stimulus-relevant tilt. In conclusion, we were able to show, in an insect ear, that directionality of channel gating considerably sharpens the neuronal frequency selectivity at the peripheral level and have identified a mechanism that enhances frequency discrimination in tonotopically organized ears.


Assuntos
Estimulação Acústica/métodos , Células Ciliadas Auditivas/fisiologia , Ativação do Canal Iônico/fisiologia , Mecanorreceptores/fisiologia , Animais , Fenômenos Biomecânicos/fisiologia , Feminino , Gryllidae , Masculino
9.
Artigo em Inglês | MEDLINE | ID: mdl-28421281

RESUMO

The tympanal ear is an evolutionary acquisition which helps moths survive predation from bats. The greater diversity of bats and echolocation strategies in the Neotropics compared with temperate zones would be expected to impose different sensory requirements on the neotropical moths. However, even given some variability among moth assemblages, the frequencies of best hearing of moths from different climate zones studied to date have been roughly the same: between 20 and 60 kHz. We have analyzed the auditory characteristics of tympanate moths from Cuba, a neotropical island with high levels of bat diversity and a high incidence of echolocation frequencies above those commonly at the upper limit of moths' hearing sensitivity. Moths of the superfamilies Noctuoidea, Geometroidea and Pyraloidea were examined. Audiograms were determined by non-invasively measuring distortion-product otoacoustic emissions. We also quantified the frequency spectrum of the echolocation sounds to which this moth community is exposed. The hearing ranges of moths in our study showed best frequencies between 36 and 94 kHz. High sensitivity to frequencies above 50 kHz suggests that the auditory sensitivity of moths is suited to the sounds used by sympatric echolocating bat fauna. Biodiversity characterizes predators and prey in the Neotropics, but the bat-moth acoustic interaction keeps spectrally matched.


Assuntos
Evolução Biológica , Quirópteros/fisiologia , Ecolocação/fisiologia , Audição/fisiologia , Mariposas/fisiologia , Acústica , Animais , Emissões Otoacústicas Espontâneas , Comportamento Predatório
10.
Eur J Neurosci ; 43(12): 1647-60, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27037932

RESUMO

During echolocation, bats continuously perform audio-motor adjustments to optimize detection efficiency. It has been demonstrated that bats adjust the amplitude of their biosonar vocalizations (known as 'pulses') to stabilize the amplitude of the returning echo. Here, we investigated this echo-level compensation behaviour by swinging mustached bats on a pendulum towards a reflective surface. In such a situation, the bats lower the amplitude of their emitted pulses to maintain the amplitude of incoming echoes at a constant level as they approach a target. We report that cortical auditory neurons that encode target distance have receptive fields that are optimized for dealing with echo-level compensation. In most cortical delay-tuned neurons, the echo amplitude eliciting the maximum response matches the echo amplitudes measured from the bats' biosonar vocalizations while they are swung in a pendulum. In addition, neurons tuned to short target distances are maximally responsive to low pulse amplitudes while neurons tuned to long target distances respond maximally to high pulse amplitudes. Our results suggest that bats dynamically adjust biosonar pulse amplitude to match the encoding of target range and to keep the amplitude of the returning echo within the bounds of the cortical map of echo delays.


Assuntos
Córtex Auditivo/fisiologia , Ecolocação/fisiologia , Localização de Som/fisiologia , Estimulação Acústica , Animais , Quirópteros , Neurônios
11.
Artigo em Inglês | MEDLINE | ID: mdl-26785850

RESUMO

During echolocation, bats estimate distance to avoid obstacles and capture moving prey. The primary distance cue is the delay between the bat's emitted echolocation pulse and the return of an echo. In the bat's auditory system, echo delay-tuned neurons that only respond to pulse-echo pairs having a specific echo delay serve target distance calculation. Accurate prey localization should benefit from the spike precision in such neurons. Here we show that delay-tuned neurons in the inferior colliculus of the mustached bat respond with higher temporal precision, shorter latency and shorter response duration than those of the auditory cortex. Based on these characteristics, we suggest that collicular neurons are best suited for a fast and accurate response that could lead to fast behavioral reactions while cortical neurons, with coarser temporal precision and longer latencies and response durations could be more appropriate for integrating acoustic information over time. The latter could be important for the formation of biosonar images.


Assuntos
Percepção Auditiva/fisiologia , Quirópteros/fisiologia , Ecolocação/fisiologia , Colículos Inferiores/citologia , Neurônios/fisiologia , Estimulação Acústica , Acústica , Potenciais de Ação/fisiologia , Animais , Córtex Auditivo/fisiologia , Vias Auditivas/fisiologia , Tempo de Reação/fisiologia , Detecção de Sinal Psicológico , Estatísticas não Paramétricas
12.
Artigo em Inglês | MEDLINE | ID: mdl-27277892

RESUMO

Distress vocalizations (also known as alarm or screams) are an important component of the vocal repertoire of a number of animal species, including bats, humans, monkeys and birds, among others. Although the behavioral relevance of distress vocalizations is undeniable, at present, little is known about the rules that govern vocalization production when in alarmful situations. In this article, we show that when distressed, bats of the species Carollia perspicillata produce repetitive vocalization sequences in which consecutive syllables are likely to be similar to one another regarding their physical attributes. The uttered distress syllables are broadband (12-73 kHz) with most of their energy focussing at 23 kHz. Distress syllables are short (~4 ms), their average sound pressure level is close to 70 dB SPL, and they are produced at high repetition rates (every 14 ms). We discuss that, because of their physical attributes, bat distress vocalizations could serve a dual purpose: (1) advertising threatful situations to conspecifics, and (2) informing the threatener that the bats are ready to defend themselves. We also discuss possible advantages of advertising danger/discomfort using repetitive utterances, a calling strategy that appears to be ubiquitous across the animal kingdom.


Assuntos
Quirópteros/fisiologia , Ecolocação/fisiologia , Espectrografia do Som/métodos , Estresse Psicológico/fisiopatologia , Vocalização Animal/fisiologia , Animais , Quirópteros/psicologia , Feminino , Masculino , Estresse Psicológico/psicologia
13.
Eur J Neurosci ; 41(5): 518-32, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25728173

RESUMO

Audition in bats serves passive orientation, alerting functions and communication as it does in other vertebrates. In addition, bats have evolved echolocation for orientation and prey detection and capture. This put a selective pressure on the auditory system in regard to echolocation-relevant temporal computation and frequency analysis. The present review attempts to evaluate in which respect the processing modules of bat auditory cortex (AC) are a model for typical mammalian AC function or are designed for echolocation-unique purposes. We conclude that, while cortical area arrangement and cortical frequency processing does not deviate greatly from that of other mammals, the echo delay time-sensitive dorsal cortex regions contain special designs for very powerful time perception. Different bat species have either a unique chronotopic cortex topography or a distributed salt-and-pepper representation of echo delay. The two designs seem to enable similar behavioural performance.


Assuntos
Córtex Auditivo/fisiologia , Ecolocação , Percepção do Tempo , Animais , Córtex Auditivo/citologia , Quirópteros , Conectoma
14.
Artigo em Inglês | MEDLINE | ID: mdl-25726017

RESUMO

It has been reported previously that in the inferior colliculus of the bat Molossus molossus, neuronal duration tuning is ambiguous because the tuning type of the neurons dramatically changes with the sound level. In the present study, duration tuning was examined in the auditory cortex of M. molossus to describe if it is as ambiguous as the collicular tuning. From a population of 174 cortical 104 (60 %) neurons did not show duration selectivity (all-pass). Around 5 % (9 units) responded preferentially to stimuli having longer durations showing long-pass duration response functions, 35 (20 %) responded to a narrow range of stimulus durations showing band-pass duration response functions, 24 (14 %) responded most strongly to short stimulus durations showing short-pass duration response functions and two neurons (1 %) responded best to two different stimulus durations showing a two-peaked duration-response function. The majority of neurons showing short- (16 out of 24) and band-pass (24 out 35) selectivity displayed "O-shaped" duration response areas. In contrast to the inferior colliculus, duration tuning in the auditory cortex of M. molossus appears level tolerant. That is, the type of duration selectivity and the stimulus duration eliciting the maximum response were unaffected by changing sound level.


Assuntos
Córtex Auditivo/citologia , Percepção Auditiva/fisiologia , Quirópteros/fisiologia , Células Receptoras Sensoriais/fisiologia , Estimulação Acústica , Potenciais de Ação/fisiologia , Animais , Córtex Auditivo/fisiologia , Mapeamento Encefálico , Quirópteros/anatomia & histologia , Psicoacústica , Tempo de Reação/fisiologia , Fatores de Tempo
15.
Artigo em Inglês | MEDLINE | ID: mdl-25894491

RESUMO

In certain nocturnal moth species the frequency range of best hearing shifts to higher frequencies during repeated sound stimulation. This could provide the moths with a mechanism to better detect approaching echolocating bats. However, such a dynamic up-tuning would be of little value for day-flying moths that use intra-specific acoustic communication. Here we examined if the ears of day-flying moths provide stable tuning during longer sound stimulation. Contrary to our expectations, dynamic up-tuning was found in the ear of the day-flying species Urania boisduvalii and Empyreuma pugione. Audiograms were measured with distortion-product otoacoustic emissions (DPOAEs). The level of the dominant distortion product (i.e. 2f1-f2) varied as a function of time by as much as 45 dB during ongoing acoustic stimulation, showing a systematic decrease at low frequencies and an increase at high frequencies. As a consequence, within about 2 s of acoustic stimulation, the DPOAEs audiogram shifted from low to high frequencies. Despite the up-tuning, the range of best audition still fell within the frequency band of the species-specific communication signals, suggesting that intra-specific communication should not be affected adversely. Up-tuning could be an ancestral condition in moth ears that in day-flying moths does not underlie larger selection pressure.


Assuntos
Audição/fisiologia , Mariposas/fisiologia , Estimulação Acústica/métodos , Animais , Orelha/fisiologia , Feminino , Voo Animal , Masculino , Fotoperíodo , Espectrografia do Som , Especificidade da Espécie
16.
J Neurophysiol ; 111(8): 1703-16, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24478161

RESUMO

Responses of echo-delay-tuned neurons that encode target distance were investigated in the dorsal auditory cortex of anesthetized short-tailed fruit bats (Carollia perspicillata). This species echolocates using short downward frequency-modulated (FM) biosonar signals. In response to FM sweeps of increasing level, 60 out of 131 studied neurons (47%) displayed a "paradoxical latency shift," i.e., longer response latency to loud sounds and shorter latency to faint sounds. In addition, a disproportionately large number of neurons (80%) displayed nonmonotonic responses, i.e., weaker responses to loud sounds and stronger responses to faint sounds. We speculate that the observed paradoxical latency shift and nonmonotonic responses are extracellular footprints of inhibitory processes evoked by loud sounds and that they could represent a specialization for the processing of the emitted loud biosonar pulse. Supporting this idea is the fact that all studied neurons displayed strong response suppression when an artificial loud pulse and a faint echo were presented together at a nonoptimal delay. In 24 neurons, iontophoresis of bicuculline (an antagonist of A-type γ-aminobutyric acid receptors) did not remove inhibitory footprints but did increase the overall spike output, and in some cases it also modified the response bandwidth and shifted the neuron's "best delay." We suggest that inhibition could play a dual role in shaping delay tuning in different auditory stations. Below the cortex it participates in delay-tuning implementation and leaves a footprint that is measurable in cortical responses, while in the cortex it provides a substrate for an in situ control of neuronal selectivity.


Assuntos
Córtex Auditivo/fisiologia , Quirópteros/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Estimulação Acústica , Animais , Feminino , Masculino
17.
Proc Biol Sci ; 281(1796): 20141872, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25339727

RESUMO

Processing of complex signals in the hearing organ remains poorly understood. This paper aims to contribute to this topic by presenting investigations on the mechanical and neuronal response of the hearing organ of the tropical bushcricket species Mecopoda elongata to simple pure tone signals as well as to the conspecific song as a complex acoustic signal. The high-frequency hearing organ of bushcrickets, the crista acustica (CA), is tonotopically tuned to frequencies between about 4 and 70 kHz. Laser Doppler vibrometer measurements revealed a strong and dominant low-frequency-induced motion of the CA when stimulated with either pure tone or complex stimuli. Consequently, the high-frequency distal area of the CA is more strongly deflected by low-frequency-induced waves than by high-frequency-induced waves. This low-frequency dominance will have strong effects on the processing of complex signals. Therefore, we additionally studied the neuronal response of the CA to native and frequency-manipulated chirps. Again, we found a dominant influence of low-frequency components within the conspecific song, indicating that the mechanical vibration pattern highly determines the neuronal response of the sensory cells. Thus, we conclude that the encoding of communication signals is modulated by ear mechanics.


Assuntos
Gryllidae/fisiologia , Audição/fisiologia , Estimulação Acústica , Acústica , Animais , Eletrofisiologia , Feminino , Masculino , Células Receptoras Sensoriais/fisiologia
18.
Proc Biol Sci ; 281(1781): 20140034, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24598427

RESUMO

Laboratory mice are well capable of performing innate routine behaviour programmes necessary for courtship, nest-building and exploratory activities although housed for decades in animal facilities. We found that in mice inactivation of the clock gene Period1 profoundly changes innate routine behaviour programmes like those necessary for courtship, nest building, exploration and learning. These results in wild-type and Period1 mutant mice, together with earlier findings on courtship behaviour in wild-type and period-mutant Drosophila melanogaster, suggest a conserved role of Period-genes on innate routine behaviour. Additionally, both per-mutant flies and Period1-mutant mice display spatial learning and memory deficits. The profound influence of Period1 on routine behaviour programmes in mice, including female partner choice, may be independent of its function as a circadian clock gene, since Period1-deficient mice display normal circadian behaviour.


Assuntos
Comportamento Animal/fisiologia , Instinto , Proteínas Circadianas Period/metabolismo , Análise de Variância , Animais , Corte , Feminino , Aprendizagem/fisiologia , Memória/fisiologia , Camundongos , Comportamento de Nidação/fisiologia , Proteínas Circadianas Period/genética , Vocalização Animal/fisiologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-24817310

RESUMO

Tympanal hearing organs of insects emit distortion-product otoacoustic emissions (DPOAEs), which in mammals are used as indicator for nonlinear cochlear amplification, and which are highly vulnerable to manipulations interfering with the animal's physiological state. Although in previous studies, evidence was provided for the involvement of auditory mechanoreceptors, the source of DPOAE generation and possible active mechanisms in tympanal organs remained unknown. Using laser Doppler vibrometry in the locust ear, we show that DPOAEs mechanically emerge at the tympanum region where the auditory mechanoreceptors are attached. Those emission-coupled vibrations differed remarkably from tympanum waves evoked by external pure tones of the same frequency, in terms of wave propagation, energy distribution, and location of amplitude maxima. Selective inactivation of the auditory receptor cells by mechanical lesions did not affect the tympanum's response to external pure tones, but abolished the emission's displacement amplitude peak. These findings provide evidence that tympanal auditory receptors, comparable to the situation in mammals, comprise the required nonlinear response characteristics, which during two-tone stimulation lead to additional, highly localized deflections of the tympanum.


Assuntos
Gafanhotos/fisiologia , Mecanorreceptores/fisiologia , Estimulação Acústica , Animais , Orelha Média/fisiologia , Feminino , Audição/fisiologia , Masculino , Vibração
20.
J Exp Biol ; 216(Pt 20): 3863-72, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23868848

RESUMO

The mechanical tuning of the ear in the moth Empyreuma pugione was investigated by distortion-product otoacoustic emissions (DPOAE) and laser Doppler vibrometry (LDV). DPOAE audiograms were assessed using a novel protocol that may be advantageous for non-invasive auditory studies in insects. To evoke DPOAE, two-tone stimuli within frequency and level ranges that generated a large matrix of values (960 frequency-level combinations) were used to examine the acoustic space in which the moth tympanum shows its best mechanical and acoustical responses. The DPOAE tuning curve derived from the response matrix resembles that obtained previously by electrophysiology, and is V-shaped and tuned to frequencies between 25 and 45 kHz with low Q10dB values of 1.21±0.26. In addition, while using a comparable stimulation regime, mechanical distortion in the displacement of the moth's tympanal membrane at the stigma was recorded with a laser Doppler vibrometer. The corresponding mechanical vibration audiograms were compared with DPOAE audiograms. Both types of audiograms have comparable shape, but most of the mechanical response fields are shifted towards lower frequencies. We showed for the first time in moths that DPOAE have a pronounced analogy in the vibration of the tympanic membrane where they may originate. Our work supports previous studies that point to the stigma (and the internally associated transduction machinery) as an important place of sound amplification in the moth ear, but also suggests a complex mechanical role for the rest of the transparent zone.


Assuntos
Estimulação Acústica , Orelha Média/fisiologia , Emissões Otoacústicas Espontâneas/fisiologia , Vibração , Animais , Audiometria , Efeito Doppler , Lasers , Mariposas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa