Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 37(12): e23279, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37902583

RESUMO

The pathogenicity elicited by Staphylococcus (S.) aureus, one of the best-studied bacteria, in the intestine is not well understood. Recently, we demonstrated that S. aureus infection induces alterations in membrane composition that are associated with concomitant impairment of intestinal function. Here, we used two organoid models, induced pluripotent stem cell (iPSC)-derived intestinal organoids and colonic intestinal stem cell-derived intestinal organoids (colonoids), to examine how sterol metabolism and oxygen levels change in response to S. aureus infection. HPLC quantification showed differences in lipid homeostasis between infected and uninfected cells, characterized by a remarkable decrease in total cellular cholesterol. As the altered sterol metabolism is often due to oxidative stress response, we next examined intracellular and extracellular oxygen levels. Three different approaches to oxygen measurement were applied: (1) cell-penetrating nanoparticles to quantify intracellular oxygen content, (2) sensor plates to quantify extracellular oxygen content in the medium, and (3) a sensor foil system for oxygen distribution in organoid cultures. The data revealed significant intracellular and extracellular oxygen drop after infection in both intestinal organoid models as well as in Caco-2 cells, which even 48 h after elimination of extracellular bacteria, did not return to preinfection oxygen levels. In summary, we show alterations in sterol metabolism and intra- and extracellular hypoxia as a result of S. aureus infection. These results will help understand the cellular stress responses during sustained bacterial infections in the intestinal epithelium.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Oxigênio , Células CACO-2 , Intestinos , Organoides , Colesterol
2.
PLoS One ; 16(8): e0256143, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34424915

RESUMO

Gastrointestinal infectious diseases remain an important issue for human and animal health. Investigations on gastrointestinal infectious diseases are classically performed in laboratory animals leading to the problem that species-specific models are scarcely available, especially when it comes to farm animals. The 3R principles of Russel and Burch were achieved using intestinal organoids of porcine jejunum. These organoids seem to be a promising tool to generate species-specific in vitro models of intestinal epithelium. 3D Organoids were grown in an extracellular matrix and characterized by qPCR. Organoids were also seeded on permeable filter supports in order to generate 2D epithelial monolayers. The organoid-based 2D monolayers were characterized morphologically and were investigated regarding their potential to study physiological transport properties and pathophysiological processes. They showed a monolayer structure containing different cell types. Moreover, their functional activity was demonstrated by their increasing transepithelial electrical resistance over 18 days and by an active glucose transport and chloride secretion. Furthermore, the organoid-based 2D monolayers were also confronted with cholera toxin derived from Vibrio cholerae as a proof of concept. Incubation with cholera toxin led to an increase of short-circuit current indicating an enhanced epithelial chloride secretion, which is a typical characteristic of cholera infections. Taken this together, our model allows the investigation of physiological and pathophysiological mechanisms focusing on the small intestine of pigs. This is in line with the 3R principle and allows the reduction of classical animal experiments.


Assuntos
Técnicas de Cultura de Células/métodos , Intestino Delgado/metabolismo , Intestino Delgado/fisiologia , Animais , Células Epiteliais/citologia , Mucosa Intestinal/citologia , Intestino Delgado/citologia , Intestinos/citologia , Modelos Biológicos , Organoides/citologia , Organoides/fisiologia , Suínos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa