RESUMO
The use of tumor markers aids in the early detection of cancer recurrence and prognosis. There is a hope that they might also be useful in screening tests for the early detection of cancer. Here, the question of finding ideal tumor markers, which should be sensitive, specific, and reliable, is an acute issue. Human plasma is one of the most popular samples as it is commonly collected in the clinic and provides noninvasive, rapid analysis for any type of disease including cancer. Many efforts have been applied in searching for "ideal" tumor markers, digging very deep into plasma proteomes. The situation in this area can be improved in two ways-by attempting to find an ideal single tumor marker or by generating panels of different markers. In both cases, proteomics certainly plays a major role. There is a line of evidence that the most abundant, so-called "classical plasma proteins", may be used to generate a tumor biomarker profile. To be comprehensive these profiles should have information not only about protein levels but also proteoform distribution for each protein. Initially, the profile of these proteins in norm should be generated. In our work, we collected bibliographic information about the connection of cancers with levels of "classical plasma proteins". Additionally, we presented the proteoform profiles (2DE patterns) of these proteins in norm generated by two-dimensional electrophoresis with mass spectrometry and immunodetection. As a next step, similar profiles representing protein perturbations in plasma produced in the case of different cancers will be generated. Additionally, based on this information, different test systems can be developed.
Assuntos
Neoplasias , Proteoma , Biomarcadores Tumorais , Proteínas Sanguíneas , Detecção Precoce de Câncer , Eletroforese em Gel Bidimensional/métodos , Humanos , Neoplasias/diagnóstico , Proteoma/metabolismoRESUMO
Haptoglobin (Hp) is a blood plasma glycoprotein that plays a critical role in tissue protection and the prevention of oxidative damage. Haptoglobin is an acute-phase protein, its concentration in plasma changes in pathology, and the test for its concentration is part of normal clinical practice. Haptoglobin is a conservative protein and is the subject of research as a potential biomarker of many diseases, including malignant neoplasms. The Human Hp gene is polymorphic and controls the synthesis of three major phenotypes-homozygous Hp1-1 and Hp2-2, and heterozygous Hp2-1, determined by a combination of allelic variants that are inherited. Numerous studies indicate that the phenotype of haptoglobin can be used to judge the individual's predisposition to various diseases. In addition, Hp undergoes various post-translational modifications (PTMs). Glioblastoma multiform (GBM) is the most malignant primary brain tumor. In our study, we have analyzed the state of Hp proteoforms in plasma and cells using 1D (SDS-PAGE) and 2D electrophoresis (2DE) with the following mass spectrometry (LC ES-MS/MS) or Western blotting. We found that the levels of α2- and ß-chain proteoforms are up-regulated in the plasma of GBM patients. An unprocessed form of Hp2-2 (PreHp2-2, zonulin) with unusual biophysical parameters (pI/Mw) was also detected in the plasma of GBM patients and glioblastoma cells. Altogether, this data shows the possibility to use proteoforms of haptoglobin as a potential GBM-specific plasma biomarker.