Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Genome ; 17(1): e20414, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38059316

RESUMO

The global production of durum wheat (Triticum durum Desf.) is hindered by a constant rise in the frequency of severe heat stress events. To identify heat-tolerant germplasm, three different germplasm panels ("discovery," "investigation," and "validation") were studied under a range of heat-stressed conditions. Grain yield (GY) and its components were recorded at each site and a heat stress susceptibility index was calculated, confirming that each 1°C temperature rise corresponds to a GY reduction in durum wheat of 4.6%-6.3%. A total of 2552 polymorphic single nucleotide polymorphisms (SNPs) defined the diversity of the first panel, while 5642 SNPs were polymorphic in the "investigation panel." The use of genome-wide association studies revealed that 36 quantitative trait loci were associated with the target traits in the discovery panel, of which five were confirmed in a "subset" tested imposing heat stress by plastic tunnels, and in the investigation panel. A study of allelic combinations confirmed that Q.icd.Heat.003-1A, Q.icd.Heat.007-1B, and Q.icd.Heat.016-3B are additive in nature and the positive alleles at all three loci resulted in a 16% higher GY under heat stress. The underlying SNPs were converted into kompetitive allele specific PCR markers and tested on the validation panel, confirming that each explained up to 9% of the phenotypic variation for GY under heat stress. These markers can now be used for breeding to improve resilience to climate change and increase productivity in heat-stressed areas.


Assuntos
Termotolerância , Triticum , Triticum/genética , Estudo de Associação Genômica Ampla , Termotolerância/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Grão Comestível
2.
Front Plant Sci ; 14: 1297131, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098797

RESUMO

Terminal drought is one of the most common and devastating climatic stress factors affecting durum wheat (Triticum durum Desf.) production worldwide. The wild relatives of this crop are deemed a vast potential source of useful alleles to adapt to this stress. A nested association mapping (NAM) panel was generated using as a recurrent parent the Moroccan variety 'Nachit' derived from Triticum dicoccoides and known for its large grain size. This was recombined to three top-performing lines derived from T. dicoccoides, T. araraticum, and Aegilops speltoides, for a total of 426 inbred progenies. This NAM was evaluated across eight environments (Syria, Lebanon, and Morocco) experiencing different degrees of terminal moisture stress over two crop seasons. Our results showed that drought stress caused on average 41% loss in yield and that 1,000-kernel weight (TKW) was the most important trait for adaptation to it. Genotyping with the 25K TraitGenetics array resulted in a consensus map of 1,678 polymorphic SNPs, spanning 1,723 cM aligned to the reference 'Svevo' genome assembly. Kinship distinguished the progenies in three clades matching the parent of origin. A total of 18 stable quantitative trait loci (QTLs) were identified as controlling various traits but independent from flowering time. The most significant genomic regions were named Q.ICD.NAM-04, Q.ICD.NAM-14, and Q.ICD.NAM-16. Allelic investigation in a second germplasm panel confirmed that carrying the positive allele at all three loci produced an average TKW advantage of 25.6% when field-tested under drought conditions. The underlying SNPs were converted to Kompetitive Allele-Specific PCR (KASP) markers and successfully validated in a third germplasm set, where they explained up to 19% of phenotypic variation for TKW under moisture stress. These findings confirm the identification of critical loci for drought adaptation derived from wild relatives that can now be readily exploited via molecular breeding.

3.
Plants (Basel) ; 9(12)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255147

RESUMO

Flowering time is a critical stage for crop development as it regulates the ability of plants to adapt to an environment. To understand the genetic control of flowering time, a genome-wide association study (GWAS) was conducted to identify the genomic regions associated with the control of this trait in durum wheat (Triticum durum Desf.). A total of 96 landraces and 288 modern lines were evaluated for days to heading, growing degree days, and accumulated day length at flowering across 13 environments spread across Morocco, Lebanon, Mauritania, and Senegal. These environments were grouped into four pheno-environments based on temperature, day length, and other climatic variables. Genotyping with a 35K Axiom array generated 7652 polymorphic single nucleotide polymorphisms (SNPs) in addition to 3 KASP markers associated with known flowering genes. In total, 32 significant QTLs were identified in both landraces and modern lines. Some QTLs had a strong association with already known regulatory photoperiod genes, Ppd-A and Ppd-B, and vernalization genes Vrn-A1 and VrnA7. However, these loci explained only 5% to 20% of variance for days to heading. Seven QTLs overlapped between the two germplasm groups in which Q.ICD.Eps-03 and Q.ICD.Vrn-15 consistently affected flowering time in all the pheno-environments, while Q.ICD.Eps-09 and Q.ICD.Ppd-10 were significant only in two pheno-environments and the combined analysis across all environments. These results help clarify the genetic mechanism controlling flowering time in durum wheat and show some clear distinctions to what is known for common wheat (Triticum aestivum L.).

4.
Front Genet ; 11: 316, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435259

RESUMO

Durum wheat is an important crop for the human diet and its consumption is gaining popularity. In order to ensure that durum wheat production maintains the pace with the increase in demand, it is necessary to raise productivity by approximately 1.5% per year. To deliver this level of annual genetic gain the incorporation of molecular strategies has been proposed as a key solution. Here, four RILs populations were used to conduct QTL discovery for grain yield (GY) and 1,000 kernel weight (TKW). A total of 576 individuals were sown at three locations in Morocco and one in Lebanon. These individuals were genotyped by sequencing with 3,202 high-confidence polymorphic markers, to derive a consensus genetic map of 2,705.7 cM, which was used to impute any missing data. Six QTLs were found to be associated with GY and independent from flowering time on chromosomes 2B, 4A, 5B, 7A and 7B, explaining a phenotypic variation (PV) ranging from 4.3 to 13.4%. The same populations were used to train genomic prediction models incorporating the relationship matrix, the genotype by environment interaction, and marker by environment interaction, to reveal significant advantages for models incorporating the marker effect. Using training populations (TP) in full sibs relationships with the validation population (VP) was shown to be the only effective strategy, with accuracies reaching 0.35-0.47 for GY. Reducing the number of markers to 10% of the whole set, and the TP size to 20% resulted in non-significant changes in accuracies. The QTLs identified were also incorporated in the models as fixed effects, showing significant accuracy gain for all four populations. Our results confirm that the prediction accuracy depends considerably on the relatedness between TP and VP, but not on the number of markers and size of TP used. Furthermore, feeding the model with information on markers associated with QTLs increased the overall accuracy.

5.
Front Plant Sci ; 8: 1277, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769970

RESUMO

Durum wheat is the 10th most important crop in the world, and its use traces back to the origin of agriculture. Unfortunately, in the last century only part of the genetic diversity available for this species has been captured in modern varieties through breeding. Here, the population structure and genetic diversity shared among elites and landraces collected from 32 countries was investigated. A total of 370 entries were genotyped with Axiom 35K array to identify 8,173 segregating single nucleotide polymorphisms (SNPs). Of these, 500 were selected as highly informative with a PIC value above 0.32 and used to test population structure via DAPC, STRUCTURE, and neighbor joining tree. A total of 10 sub-populations could be identified, six constituted by modern germplasm and four by landraces of different geographical origin. Interestingly, genomic comparison among groups indicated that Middle East and Ethiopia had the lowest level of allelic diversity, while breeding programs and landraces collected outside these regions were the richest in rare alleles. Further, phylogenetic analysis among landraces indicated that Ethiopia might represent a second center of origin of durum wheat, rather than a second domestication site as previously believed. Together, the analyses carried here provide a global picture of the available genetic diversity for this crop and shall guide its targeted use by breeders.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa