Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Electrophoresis ; 45(1-2): 55-68, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37495859

RESUMO

Separation and identification of chiral molecules is a topic widely discussed in the literature and of fundamental importance, especially in the pharmaceutical and food fields, both from industrial and laboratory points of view. Several techniques are used to carry out these analyses, but high-performance liquid chromatography is often the "gold standard." The high costs of chiral columns, necessary for this technique, led researchers to look for an alternative, and capillary electrophoresis (CE) is a technique capable of overcoming some of the disadvantages of liquid chromatography, often providing comparable results in terms of sensitivity and robustness. We addressed this topic, already widely discussed in the literature, providing an overview of the last 6 years of the most frequent and recent applications of CE. To make the manuscript more effective, we decided to divide it into paragraphs that represent the main field of application, from enantioseparation in complex matrices (pharmacokinetic studies or toxicological dosage of drugs, analysis of environmental pollutants, and analyses of foods) to quality control analyses on pharmaceutical formulas. About these, which are the fields of most meaningful use, we mentioned some of the most innovative and performing methods, with a look to the future on the application of new materials used, such as chiral selectors, that can make these types of analyses accessible to all, reducing cost, time, and excessive use of toxic solvents.


Assuntos
Eletroforese Capilar , Eletroforese Capilar/métodos , Cromatografia Líquida , Estereoisomerismo , Cromatografia Líquida de Alta Pressão , Preparações Farmacêuticas
2.
Anal Bioanal Chem ; 416(2): 439-448, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37946037

RESUMO

In the present study, a homemade mixed-mode ion-exchange sorbent based on silica with embedded graphene microparticles is applied for the selective extraction of 2-aminobenzothiazole (NH2BT) followed by determination through liquid chromatography coupled to high-resolution mass spectrometry. The sorbent was evaluated for the solid-phase extraction of NH2BT from environmental water samples (river, effluent wastewater, and influent wastewater), and NH2BT was strongly retained through the selective cation-exchange interactions. Therefore, the inclusion of a clean-up step of 7 mL of methanol provided good selectivity for the extraction of NH2BT. The apparent recoveries obtained for environmental water samples ranged from 62 to 69% and the matrix effect from -1 to -14%. The sorbent was also evaluated in the clean-up step of the organic extract for the extraction of NH2BT from organic extracts of indoor dust samples (10 mL of ethyl acetate from pressurized liquid extraction) and fish (10 mL of acetonitrile from QuEChERS extraction). The organic extracts were acidified (adding a 0.1% of formic acid) to promote the cation-exchange interactions between the sorbent and the analyte. The apparent recoveries for fish samples ranged from 22 to 36% depending on the species. In the case of indoor dust samples, the recovery was 41%. It should be highlighted the low matrix effect encountered in such complex samples, with values ranging from -7 to 5% for fish and dust samples. Finally, various samples were analyzed. The concentration in river samples ranged from 31 to 136 ng/L; in effluent wastewater samples, from 55 to 191 ng/L; in influent wastewater samples, from 131 to 549 ng/L; in fish samples, from 14 to 57 ng/g dried weight; and in indoor dust samples, from

Assuntos
Espectrometria de Massas em Tandem , Poluentes Químicos da Água , Animais , Espectrometria de Massas em Tandem/métodos , Águas Residuárias , Água/análise , Poeira/análise , Poluentes Químicos da Água/análise , Extração em Fase Sólida/métodos , Peixes , Cátions/análise
3.
Mikrochim Acta ; 190(11): 428, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37796344

RESUMO

A sol-gel Carbowax 20 M/3-[(3-Cholamidopropyl) dimethyl ammonio]-1-propanesulfonate composite sorbent-based capsule phase microextraction device has been fabricated and characterized for the determination of four statins (pravastatin, rosuvastatin, pitavastatin, and atorvastatin) in human urine. The presence of ionizable carboxyl functional groups in statins requires pH adjustment of the sample matrix to ensure that the target molecules are in their protonated form (pH should be 2 units below their pKa values) which not only is cumbersome but also risks unintended contamination of the sample. This challenge was addressed by introducing zwitterionic ionic liquid in addition to neutral, polar Carbowax 20 M polymer in the sol-gel-derived composite sorbent. As such, the composite zwitterionic multi-modal sorbent can simultaneously extract neutral, cationic, and anionic species. This particular attribute of the composite sorbent eliminates the necessity of the matrix pH adjustment and consequently simplifies the overall sample preparation workflow. Various experimental parameters such as the sample amount, extraction time, salt addition, stirring rate, and elution solvent type that may affect the extraction performance of the statins were investigated using a central composite design and the one-parameter-at-a-time approach. The analytes and the internal standard were separated on a C18 column with gradient elution using phosphate buffer (20 mM, pH 3) and acetonitrile as mobile phase. The analytes were detected at 237 nm. The method was validated, and linearity was observed in the range 0.10-2.0 µg mL-1 for all compounds. The method precision was better 9.9% and 10.4% for intra-day and inter-day, respectively, while the relative recoveries were acceptable, ranging between 83.4 and 116% in all cases. Method greenness was assessed using the ComplexGAPI index. Finally, the method's applicability was demonstrated in the determination of the statins in authentic human urine after oral administration of pitavastatin and rosuvastatin-containing tablets.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Líquidos Iônicos , Humanos , Polietilenoglicóis , Rosuvastatina Cálcica , Lipídeos
4.
Molecules ; 28(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36903348

RESUMO

Sol-gel graphene oxide-coated polyester fabric platforms were synthesized and used for the on-line sequential injection fabric disk sorptive extraction (SI-FDSE) of toxic (i.e., Cd(II), Cu(II) and Pb(II)) metals in different distilled spirit drinks prior to their determination by electrothermal atomic absorption spectrometry (ETAAS). The main parameters that could potentially influence the extraction efficiency of the automatic on-line column preconcentration system were optimized and the SI-FDSE-ETAAS method was validated. Under optimum conditions, enhancement factors of 38, 120 and 85 were achieved for Cd(II), Cu(II) and Pb(II), respectively. Method precision (in terms of relative standard deviation) was lower than 2.9% for all analytes. The limits of detection for Cd(II), Cu(II) and Pb(II) were 1.9, 7.1 and 17.3 ng L-1, respectively. As a proof of concept, the proposed protocol was employed for the monitoring of Cd(II), Cu(II), and Pb(II) in distilled spirit drinks of different types.


Assuntos
Cádmio , Grafite , Chumbo
5.
Molecules ; 28(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677588

RESUMO

Favipiravir (FAV) has become a promising antiviral agent for the treatment of COVID-19. Herein, a green, fast, high-sample-throughput, non-instrumental, and affordable analytical method is proposed based on surfactant-assisted dispersive liquid-liquid microextraction (SA-DLLME) combined with thin-layer chromatography-digital image colourimetry (TLC-DIC) for determining favipiravir in biological and pharmaceutical samples. Triton X-100 and dichloromethane (DCM) were used as the disperser and extraction solvents, respectively. The extract obtained after DLLME procedure was spotted on a TLC plate and allowed to develop with a mobile phase of chloroform:methanol (8:2, v/v). The developed plate was photographed using a smartphone under UV irradiation at 254 nm. The quantification of FAV was performed by analysing the digital images' spots with open-source ImageJ software. Multivariate optimisation using Plackett-Burman design (PBD) and central composite design (CCD) was performed for the screening and optimisation of significant factors. Under the optimised conditions, the method was found to be linear, ranging from 5 to 100 µg/spot, with a correlation coefficient (R2) ranging from 0.991 to 0.994. The limit of detection (LOD) and limit of quantification (LOQ) were in the ranges of 1.2-1.5 µg/spot and 3.96-4.29 µg/spot, respectively. The developed approach was successfully applied for the determination of FAV in biological (i.e., human urine and plasma) and pharmaceutical samples. The results obtained using the proposed methodology were compared to those obtained using HPLC-UV analysis and found to be in close agreement with one another. Additionally, the green character of the developed method with previously reported protocols was evaluated using the ComplexGAPI, AGREE, and Eco-Scale greenness assessment tools. The proposed method is green in nature and does not require any sophisticated high-end analytical instruments, and it can therefore be routinely applied for the analysis of FAV in various resource-limited laboratories during the COVID-19 pandemic.


Assuntos
COVID-19 , Microextração em Fase Líquida , Surfactantes Pulmonares , Humanos , Tensoativos , Colorimetria , Cromatografia em Camada Fina , Microextração em Fase Líquida/métodos , Smartphone , Pandemias , Solventes , Cromatografia Líquida de Alta Pressão , Lipoproteínas , Preparações Farmacêuticas , Limite de Detecção
6.
Molecules ; 28(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36903374

RESUMO

Nowadays, it is vital to have new, complete, and rapid methods to screen and follow pharmacotoxicological and forensic cases. In this context, an important role is undoubtedly played by liquid chromatography-tandem mass spectrometry (LC-MS/MS) thanks to its advanced features. This instrument configuration can offer comprehensive and complete analysis and is a very potent analytical tool in the hands of analysts for the correct identification and quantification of analytes. The present review paper discusses the applications of LC-MS/MS in pharmacotoxicological cases because it is impossible to ignore the importance of this powerful instrument for the rapid development of pharmacological and forensic advanced research in recent years. On one hand, pharmacology is fundamental for drug monitoring and helping people to find the so-called "personal therapy" or "personalized therapy". On the other hand, toxicological and forensic LC-MS/MS represents the most critical instrument configuration applied to the screening and research of drugs and illicit drugs, giving critical support to law enforcement. Often the two areas are stackable, and for this reason, many methods include analytes attributable to both fields of application. In this manuscript, drugs and illicit drugs were divided in separate sections, with particular attention paid in the first section to therapeutic drug monitoring (TDM) and clinical approaches with a focus on central nervous system (CNS). The second section is focused on the methods developed in recent years for the determination of illicit drugs, often in combination with CNS drugs. All references considered herein cover the last 3 years, except for some specific and peculiar applications for which some more dated but still recent articles have been considered.


Assuntos
Drogas Ilícitas , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Medicina Legal , Monitoramento de Medicamentos
7.
Anal Chem ; 94(38): 12943-12947, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36098462

RESUMO

A novel dual lab-in-syringe flow-batch (D-LIS-FB) platform for automatic fabric-disk-in-syringe sorptive extraction followed by oxidative back-extraction as a front end to inductively coupled plasma atomic emission spectrometry (ICP-AES) is presented for the first time. Sol-gel poly(caprolactone)-poly(dimethylsiloxane)-poly(caprolactone)-coated polyester fabric disks were packed at the top of the glass barrel of a microsyringe pump as an alternative to column preconcentration. Herein lie multiple significant advantages including effectiveness, compactness, lower back-pressure, and lower time of analysis. Copper, lead, and cadmium were used as model analytes for the exploration of the capabilities of the developed platform. The online retained metal-diethyldithiophosphate complexes were eluted using diisopropyl ketone prior to atomization. Undesirable incompatibility of organic solvents for direct injection into the ICP-AES system was overcome ingeniously in a flow manner by oxidative back-extraction of the analytes utilizing a second lab-in-syringe setup. Following its optimization, the D-LIS-FB platform showed excellent linearity, in combination with good method precision (i.e., RSD < 3.4%) and trueness. Moreover, the limits of detection were 0.25 µg L-1 for Cd(II), 0.13 µg L-1 for Cu(II), and 0.37 µg L-1 for Pb(II), confirming the applicability of the proposed system for metal analysis at trace levels. As a proof-of-concept, the developed versatile system was utilized for the analysis of different environmental, food, and biological samples.


Assuntos
Cádmio , Cobre , Cádmio/química , Cobre/análise , Cetonas , Chumbo , Poliésteres , Solventes , Análise Espectral , Seringas
8.
J Sep Sci ; 45(1): 113-133, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34047458

RESUMO

Pesticides are excessively used in agriculture to improve the quality of crops by eliminating the negative effects of pests. Among the different groups of pesticides, triazine pesticides are a group of compounds that contain a substituted C3 H3 N3 heterocyclic ring, and they are widely used. Triazine pesticides can be dangerous for humans as well as for the aquatic environment because of their high toxicity and endocrine disrupting effect. However, the concentration of these chemical compounds in water samples is low. Moreover, other compounds that may exist in the water samples can interfere with the determination of triazine pesticides. As a result, it is important to develop sample preparation methods that provide preconcentration of the target analyte and sufficient clean-up of the samples. Recently, a wide variety of novel microextraction and miniaturized extraction techniques (e.g., solid-phase microextraction and liquid-phase microextraction, stir bar sorptive extraction, fabric phase sorptive extraction, dispersive solid-phase extraction, and magnetic solid-phase extraction) have been developed. In this review, we aim to discuss the recent advances regarding the extraction of triazine pesticides from environmental water samples. Emphasis will be given to novel sample preparation methods and novel sorbents developed for sorbent-based extraction techniques.

9.
Molecules ; 27(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36364020

RESUMO

Fabric phase sorptive extraction (FPSE) has become a popular sorptive-based microextraction technique for the rapid analysis of a wide variety of analytes in complex matrices. The present study describes a simple and green analytical protocol based on in-matrix methyl chloroformate (MCF) derivatization of non-steroidal anti-inflammatory (NSAID) drugs in urine samples followed by FPSE and gas chromatography-mass spectrometry (GC-MS) analysis. Use of MCF as derivatizing reagent saves substantial amounts of time, reagent and energy, and can be directly performed in aqueous samples without any sample pre-treatment. The derivatized analytes were extracted using sol−gel Carbowax 20M coated FPSE membrane and eluted in 0.5 mL of MeOH for GC-MS analysis. A chemometric design of experiment-based approach was utilized comprising a Placket−Burman design (PBD) and central composite design (CCD) for screening and optimization of significant variables of derivatization and FPSE protocol, respectively. Under optimized conditions, the proposed FPSE-GC-MS method exhibited good linearity in the range of 0.1−10 µg mL−1 with coefficients of determination (R2) in the range of 0.998−0.999. The intra-day and inter-day precisions for the proposed method were lower than <7% and <10%, respectively. The developed method has been successfully applied to the determination of NSAIDs in urine samples of patients under their medication. Finally, the green character of the proposed method was evaluated using ComplexGAPI tool. The proposed method will pave the way for simper analysis of polar drugs by FPSE-GC-MS.


Assuntos
Anti-Inflamatórios não Esteroides , Poluentes Químicos da Água , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Anti-Inflamatórios não Esteroides/análise , Poluentes Químicos da Água/análise , Água/química
10.
Molecules ; 27(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35566315

RESUMO

Green extraction techniques (GreETs) emerged in the last decade as greener and sustainable alternatives to classical sample preparation procedures aiming to improve the selectivity and sensitivity of analytical methods, simultaneously reducing the deleterious side effects of classical extraction techniques (CETs) for both the operator and the environment. The implementation of improved processes that overcome the main constraints of classical methods in terms of efficiency and ability to minimize or eliminate the use and generation of harmful substances will promote more efficient use of energy and resources in close association with the principles supporting the concept of green chemistry. The current review aims to update the state of the art of some cutting-edge GreETs developed and implemented in recent years focusing on the improvement of the main analytical features, practical aspects, and relevant applications in the biological, food, and environmental fields. Approaches to improve and accelerate the extraction efficiency and to lower solvent consumption, including sorbent-based techniques, such as solid-phase microextraction (SPME) and fabric-phase sorbent extraction (FPSE), and solvent-based techniques (µQuEChERS; micro quick, easy, cheap, effective, rugged, and safe), ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE), in addition to supercritical fluid extraction (SFE) and pressurized solvent extraction (PSE), are highlighted.


Assuntos
Cromatografia com Fluido Supercrítico , Microextração em Fase Sólida , Alimentos , Solventes , Manejo de Espécimes
11.
Anal Chem ; 93(4): 1957-1961, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33470800

RESUMO

This study introduces an innovative device for the noninvasive sampling and chromatographic analysis of different compounds present in exhaled breath aerosol (EBA). The new sampling device, especially in light of the recent COVID-19 pandemic that forced many countries to impose mandatory facemasks, allows an easy monitoring of the subject's exposure to different compounds they may come in contact with, actively or passively. The project combines the advantages of a fabric-phase sorptive membrane (FPSM) as an in vivo sampling device with a validated LC-MS/MS screening procedure able to monitor more than 739 chemicals with an overall analysis time of 18 min. The project involves the noninvasive in vivo sampling of the EBA using an FPSM array inserted inside an FFP2 mask. The study involved 15 healthy volunteers, and no restrictions were imposed during or prior to the sampling process regarding the consumption of drinks, food, or drugs. The FPSM array-LC-MS/MS approach allowed us to effectively exploit the advantages of the two complementary procedures (the convenient sampling by an FPSM array and the rapid analysis by LC-MS/MS), obtaining a powerful and green tool to carry out rapid screening analyses for human exposure to different compounds. The flexible fabric substrate, the sponge-like porous architecture of the high-efficiency sol-gel sorbent coating, the availability of a large cache of sorbent coatings, including polar, nonpolar, mixed mode, and zwitterionic phases, the easy installation into the facemask, and the possibility of sampling without interrupting regular activities provide FPSMs unparalleled advantages over other sampling techniques, and their applications are expected to expand to many other clinical or toxicological studies.


Assuntos
Exposição Ambiental , Membranas Artificiais , Têxteis , COVID-19/epidemiologia , COVID-19/virologia , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Máscaras , Pandemias , Reprodutibilidade dos Testes , SARS-CoV-2/isolamento & purificação , Espectrometria de Massas em Tandem/métodos
12.
J Sep Sci ; 44(8): 1633-1640, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33448130

RESUMO

Monitoring the residual toxicant concentrations in foods is the key step for minimizing potential hazards. The huge interest about food contamination and exposure to endocrine disruptors such as bisphenol A has emerged the development of sensitive analytical methodologies to guarantee the safety and quality of foods. In this work, a green molecularly imprinted solid-phase extraction protocol coupled with high-performance liquid chromatography with UV detection was optimized following the principles of green analytical chemistry. An imprinted sol-gel silica-based hybrid inorganic-organic polymeric sorbent was used to monitor the leaching of bisphenol A from different packaging materials (glass vessels, cans, and polypropylene containers) in walnuts stored within a period of 6 months at 25 and 4°C. Extraction parameters including loading time (5-20 min), solvent type (acetonitrile, ethanol, methanol, acetone, acetonitrile:methanol, 50:50, v/v), and elution flow rate (0.2-1 mL/min) were optimized with one-factor-at-a-time method. The selected extraction optimum parameters incorporated elution with acetonitrile at 0.2 mL/min flow rate, for 10 min sample holding time. The imprinting factor was equal to 4.55 ± 0.26 (n = 3). The optimized method presented high recovery (94.3 ± 4.2%, n = 3), good linearity (>0.999), intra-assay repeatability (90.2-95.6%, n = 3), and interassay precision (86.7-93.1%, n = 3).


Assuntos
Compostos Benzidrílicos/análise , Contaminação de Alimentos/análise , Armazenamento de Alimentos , Impressão Molecular , Nozes/química , Fenóis/análise , Extração em Fase Sólida , Cromatografia Líquida de Alta Pressão , Espectrofotometria Ultravioleta
13.
Biomed Chromatogr ; 35(2): e4974, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32893361

RESUMO

An improved fabric-phase sorptive extraction (FPSE) protocol has been developed and validated herein for the simple, fast, sensitive and green determination of seven parabens-methyl paraben, ethyl paraben, propyl paraben, butyl paraben, isopropyl paraben, isobutyl paraben and benzyl paraben-in human urine samples by HPLC-DAD. The mobile phase consisted of ammonium acetate (0.05 m) and acetonitrile, while total analysis time was 13.2 min. Sol-gel poly (tetrahydrofuran) coated FPSE membrane resulted in optimum extraction sensitivity for the seven parabens. The novel FPSE medium as well as the improved and faster sample preparation procedure resulted in lower limit of detection and quantitation values in comparison with previously reported methods. The separation was carried out using an RP-HPLC method with a Spherisorb C18 column and a flow rate of 1.4 ml/min. The validation of the analytical method was carried out by means of linearity, precision, accuracy, selectivity, sensitivity and robustness. For all seven parabens, the limits of detection and quantitation were 0.003 and 0.01 µg/ml, respectively. Relative recovery rates were between 86.3 and 104%, while RSD values were <12.6 and 19.3% for within- and between-day repeatability, respectively. The method was subsequently applied to real human urine samples.


Assuntos
Fracionamento Químico/métodos , Cromatografia Líquida de Alta Pressão/métodos , Parabenos/análise , Humanos , Limite de Detecção , Modelos Lineares , Parabenos/química , Parabenos/isolamento & purificação , Reprodutibilidade dos Testes , Têxteis
14.
Molecules ; 26(4)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562079

RESUMO

Fabric phase sorptive extraction (FPSE) is an evolutionary sample preparation approach which was introduced in 2014, meeting all green analytical chemistry (GAC) requirements by implementing a natural or synthetic permeable and flexible fabric substrate to host a chemically coated sol-gel organic-inorganic hybrid sorbent in the form of an ultra-thin coating. This construction results in a versatile, fast, and sensitive micro-extraction device. The user-friendly FPSE membrane allows direct extraction of analytes with no sample modification, thus eliminating/minimizing the sample pre-treatment steps, which are not only time consuming, but are also considered the primary source of major analyte loss. Sol-gel sorbent-coated FPSE membranes possess high chemical, solvent, and thermal stability due to the strong covalent bonding between the fabric substrate and the sol-gel sorbent coating. Subsequent to the extraction on FPSE membrane, a wide range of organic solvents can be used in a small volume to exhaustively back-extract the analytes after FPSE process, leading to a high preconcentration factor. In most cases, no solvent evaporation and sample reconstitution are necessary. In addition to the extensive simplification of the sample preparation workflow, FPSE has also innovatively combined the extraction principle of two major, yet competing sample preparation techniques: solid phase extraction (SPE) with its characteristic exhaustive extraction, and solid phase microextraction (SPME) with its characteristic equilibrium driven extraction mechanism. Furthermore, FPSE has offered the most comprehensive cache of sorbent chemistry by successfully combining almost all of the sorbents traditionally used exclusively in either SPE or in SPME. FPSE is the first sample preparation technique to exploit the substrate surface chemistry that complements the overall selectivity and the extraction efficiency of the device. As such, FPSE indeed represents a paradigm shift approach in analytical/bioanalytical sample preparation. Furthermore, an FPSE membrane can be used as an SPME fiber or as an SPE disk for sample preparation, owing to its special geometric advantage. So far, FPSE has overwhelmingly attracted the interest of the separation scientist community, and many analytical scientists have been developing new methodologies by implementing this cutting-edge technique for the extraction and determination of many analytes at their trace and ultra-trace level concentrations in environmental samples as well as in food, pharmaceutical, and biological samples. FPSE offers a total sample preparation solution by providing neutral, cation exchanger, anion exchanger, mixed mode cation exchanger, mixed mode anion exchanger, zwitterionic, and mixed mode zwitterionic sorbents to deal with any analyte regardless of its polarity, ionic state, or the sample matrix where it resides. Herein we present the theoretical background, synthesis, mechanisms of extraction and desorption, the types of sorbents, and the main applications of FPSE so far according to different sample categories, and to briefly show the progress, advantages, and the main principles of the proposed technique.


Assuntos
Métodos Analíticos de Preparação de Amostras/métodos , Extração em Fase Sólida/métodos
15.
Molecules ; 26(15)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34361614

RESUMO

A sol-gel thiocyanatopropyl-functionalized silica sorbent was synthesized and employed for an automated on-line microcolumn preconcentration platform as a front-end to inductively coupled plasma atomic emission spectroscopy (ICP-AES) for the simultaneous determination of Cd(II), Pb(II), Cu(II), Cr(III), Co(II), Ni(II), Zn(II), Mn(II), Hg(II), and V(II). The developed system is based on an easy-to-repack microcolumn construction integrated into a flow injection manifold coupled directly to ICP-AES's nebulizer. After on-line extraction/preconcentration of the target analyte onto the surface of the sorbent, successive elution with 1.0 mol L-1 HNO3 was performed. All main chemical and hydrodynamic factors affecting the effectiveness of the system were thoroughly investigated and optimized. Under optimized experimental conditions, for 60 s preconcentration time, the enhancement factor achieved for the target analytes was between 31 to 53. The limits of detection varied in the range of 0.05 to 0.24 µg L-1, while the limits of quantification ranged from 0.17 to 0.79 µg L-1. The precision of the method was expressed in terms of relative standard deviation (RSD%) and was less than 7.9%. Furthermore, good method accuracy was observed by analyzing three certified reference materials. The proposed method was also successfully employed for the analysis of environmental water samples.

16.
Molecules ; 26(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799523

RESUMO

Parabens have been widely employed as preservatives since the 1920s for extending the shelf life of foodstuffs, medicines, and daily care products. Given the fact that there are some legitimate concerns related to their potential multiple endocrine-disrupting properties, the development of novel bioanalytical methods for their biomonitoring is crucial. In this study, a fabric phase sorptive extraction reversed-phase liquid chromatography method coupled with UV detection (FPSE-HPLC-UV) was developed and validated for the quantitation of seven parabens in human plasma samples. Chromatographic separation of the seven parabens and p-hydroxybenzoic acid was achieved on a semi-micro Spherisorb ODS1 analytical column under isocratic elution using a mobile phase containing 0.1% (v/v) formic acid and 66% 49 mM ammonium formate aqueous solution in acetonitrile at flow rate 0.25 mL min-1 with a 24-min run time for each sample. The method was linear at a concentration range of 20 to 500 ng mL-1 for the seven parabens under study in human plasma samples. The efficiency of the method was proven with the analysis of 20 human plasma samples collected from women subjected to breast cancer surgery and to reconstructive and aesthetic breast surgery. The highest quantitation rates in human plasma samples from cancerous cases were found for methylparaben and isobutylparaben with average plasma concentrations at 77 and 112.5 ng mL-1. The high concentration levels detected agree with previous findings for some of the parabens and emphasize the need for further epidemiological research on the possible health effects of the use of these compounds.


Assuntos
Cromatografia de Fase Reversa/métodos , Parabenos/análise , Plasma/química , Cromatografia Líquida de Alta Pressão/métodos , Disruptores Endócrinos/análise , Feminino , Humanos , Limite de Detecção , Conservantes Farmacêuticos/análise , Extração em Fase Sólida/métodos , Têxteis/análise
17.
J Sep Sci ; 43(9-10): 1817-1829, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31958358

RESUMO

A rapid environmental pollution screening and monitoring workflow based on fabric phase sorptive extraction-gas chromatography-tandem mass spectrometry (FPSE-GC-MS/MS) is proposed for the first time for the analysis of 17 widespread used fungicides (metalaxyl, cyprodinil, tolylfluanid, procymidone, folpet, fludioxonil, myclobutanil, kresoxim methyl, iprovalicarb, benalaxyl, trifloxystrobin, fenhexamid, tebuconazole, iprodione, pyraclostrobin, azoxystrobin and dimethomorph) in environmental waters. The most critical parameters affecting FPSE, such as sample volume, matrix pH, desorption solvent and time, and ionic strength were optimized by statistical design of experiment to obtain the highest extraction efficiency. Under the optimized conditions, the proposed FPSE-GC-MS/MS method was validated in terms of linearity, repeatability, reproducibility, accuracy and precision. To assess matrix effects, recovery studies were performed employing different water matrices including ultrapure, fountain, river, spring, and tap water at 4 different concentration levels (0.1, 0.5, 1 and 5 µg/L). Recoveries were quantitative with values ranging between 70-115%, and relative standard deviation values lower than 14%. Limits of quantification were at the low ng/L for all the target fungicides. Finally, the validated FPSE-GC-MS/MS method was applied to real water samples, revealing the presence of 11 out of the 17 target fungicides.


Assuntos
Fungicidas Industriais/análise , Poluentes Químicos da Água/química , Adsorção , Cromatografia Gasosa , Espectrometria de Massas em Tandem
18.
J Sep Sci ; 43(13): 2626-2635, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32259348

RESUMO

A simple, fast, and sensitive analytical protocol using fabric-phase sorptive extraction followed by high performance liquid chromatography with ultraviolet detection has been developed and validated for the extraction of five parabens including methylparaben, ethylparaben, propylparaben, butylparaben, and benzylparaben. In the present work, sol-gel polyethylene glycol coated fabric-phase sorptive extraction membrane is used for the preconcentration of parabens (polar) from complex matrices. The use of fabric-phase sorptive extraction membrane provides a high surface area which offers high sorbent loading, shortened equilibrium time, and overall decrease in the sample preparation time. Various factors affecting the performance of fabric-phase sorptive extraction, including extraction time, eluting solvent, elution time, and pH of the sample matrix, were optimized. Separation was performed using a mobile phase consisting of water:acetonitrile (63:37; v/v) at an isocratic elution mode at a flow rate of 0.9 mL/min with wavelength at 254 nm. The calibration curves of the target analytes were prepared with good correlation coefficient values (r2  > 0.9955). The limit of detection values range from 0.252 to 0.580 ng/mL. Finally, the method was successfully applied to various cosmetics and personal care product samples such as rose water, deodorant, hair serum, and cream with extraction recoveries ranged between 88 and 122% with relative standard deviation <5%.


Assuntos
Cosméticos/química , Parabenos/análise , Adsorção , Cromatografia Líquida de Alta Pressão , Espectrofotometria Ultravioleta
19.
Mikrochim Acta ; 187(6): 337, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32430628

RESUMO

A sensitive and readily deployable analytical method has been reported for the simultaneous analysis of pirimicarb (PRM) and fenitrothion (FEN) pesticide residues in environmental water samples using fabric phase sorptive extraction (FPSE) followed by high-performance liquid chromatography combined with photodiode array (HPLC-PDA) detector. Both pesticides were successfully determined with a Luna omega C18 column under isocratic elution mode by means of acetonitrile and phosphate buffer (pH 3.0) as the mobile phase. The quantitative data for PRM and FEN were obtained at their maximum wavelengths of 310 nm and 268 nm, respectively. The calibration plots were linear in the range 10.00-750.00 ng mL-1 and 10.00-900.00 ng mL-1 with correlation coefficient of 0.9984 and 0.9992 for PRM and FEN, respectively. Major FPSE experimental variables were investigated in detail, such as contact time with the FPSE membrane, pH and electrolyte concentration, and the volume and type of desorption solvent. Under the optimized conditions, the developed method showed satisfactory reproducibility with relative standard deviations less than 2.5% and low limits of detection of 2.98 and 3.02 ng mL-1 for PRM and FEN, respectively. The combined procedure allows for enhancement factors ranging from 88 to 113, with pre-concentration values of 125 for both analytes. The chromatographic resolutions were approx. 12 for FEN (retention factor of 3.52) and PRM (retention factor of 6.09), respectively, with a selectivity factor of 1.73. Finally, the validated method was successfully applied to real environmental water samples for the determination of these pesticides. Graphical abstract.


Assuntos
Carbamatos/análise , Fenitrotion/análise , Resíduos de Praguicidas/análise , Pirimidinas/análise , Celulose/química , Cromatografia Líquida de Alta Pressão , Dimetilpolisiloxanos/química , Lagos/análise , Limite de Detecção , Poliésteres/química , Lagoas/análise , Reprodutibilidade dos Testes , Rios/química , Extração em Fase Sólida/instrumentação , Extração em Fase Sólida/métodos , Têxteis , Poluentes Químicos da Água/análise
20.
Molecules ; 26(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375078

RESUMO

A novel simple and sensitive, time-based flow injection solid phase extraction system was developed for the automated determination of metals at low concentration. The potential of the proposed scheme, coupled with flame atomic absorption spectrometry (FAAS), was demonstrated for trace lead and chromium(VI) determination in environmental water samples. The method, which was based on a new sorptive extraction system, consisted of a microcolumn packed with glass fiber coated with sol-gel poly (diphenylsiloxane) (sol-gel PDPS), which is presented here for the first time. The analytical procedure involves the on-line chelate complex formation of target species with ammonium pyrrolidine dithiocarbamate (APDC), retention onto the hydrophobic sol-gel sorbent coated surface of glass fibers, and finally elution with methyl isobutyl ketone prior to atomization. All main chemical and hydrodynamic factors, which affect the complex formation, retention, and elution of the metal, were optimized thoroughly. Furthermore, the tolerance to potential interfering ions appearing in environmental samples was also explored. Enhancement factors of 215 and 70, detection limits (3 s) of 1.1 µg·L-1 and 1.2 µg·L-1, and relative standard deviations (RSD) of 3.0% (at 20.0 µg·L-1) and 3.2% (at 20.0 µg·L-1) were obtained for lead and chromium(VI), respec tively, for 120 s preconcentration time. The trueness of the developed method was estimated by analyzing certified reference materials and spiked environmental water samples.


Assuntos
Análise de Injeção de Fluxo , Géis/química , Vidro/química , Metais/química , Siloxanas/química , Soluções/química , Espectrofotometria Atômica , Técnicas Biossensoriais , Quelantes/química , Quelantes/farmacologia , Fenômenos Químicos , Concentração de Íons de Hidrogênio , Metais/toxicidade , Extração em Fase Sólida , Espectrofotometria Atômica/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Água/análise , Água/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa