Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Genome Res ; 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760562

RESUMO

The advent of massively parallel sequencing revealed extensive transcription beyond protein-coding genes, identifying tens of thousands of long noncoding RNAs (lncRNAs). Selected functional examples raised the possibility that lncRNAs, as a class, may maintain broad regulatory roles. Expression of lncRNAs is strongly linked with adjacent protein-coding gene expression, suggesting potential cis-regulatory functions. A more detailed understanding of these regulatory roles may be obtained through careful examination of the precise timing of lncRNA expression relative to adjacent protein-coding genes. Despite the diversity of reported lncRNA regulatory mechanisms, where causal cis-regulatory relationships exist, lncRNA transcription is expected to precede changes in target gene expression. Using a high temporal resolution RNA-seq time course, we profiled the expression dynamics of several thousand lncRNAs and protein-coding genes in synchronized, transitioning human cells. Our findings reveal that lncRNAs are expressed synchronously with adjacent protein-coding genes. Analysis of lipopolysaccharide-activated mouse dendritic cells revealed the same temporal relationship observed in transitioning human cells. Our findings suggest broad-scale cis-regulatory roles for lncRNAs are not common. The strong association between lncRNAs and adjacent genes may instead indicate an origin as transcriptional by-products from active protein-coding gene promoters and enhancers.

2.
Genome Res ; 31(10): 1913-1926, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34548323

RESUMO

The tumor immune microenvironment is a main contributor to cancer progression and a promising therapeutic target for oncology. However, immune microenvironments vary profoundly between patients, and biomarkers for prognosis and treatment response lack precision. A comprehensive compendium of tumor immune cells is required to pinpoint predictive cellular states and their spatial localization. We generated a single-cell tumor immune atlas, jointly analyzing published data sets of >500,000 cells from 217 patients and 13 cancer types, providing the basis for a patient stratification based on immune cell compositions. Projecting immune cells from external tumors onto the atlas facilitated an automated cell annotation system. To enable in situ mapping of immune populations for digital pathology, we applied SPOTlight, combining single-cell and spatial transcriptomics data and identifying colocalization patterns of immune, stromal, and cancer cells in tumor sections. We expect the tumor immune cell atlas, together with our versatile toolbox for precision oncology, to advance currently applied stratification approaches for prognosis and immunotherapy.


Assuntos
Neoplasias , Biomarcadores Tumorais/genética , Humanos , Imunoterapia , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisão , Prognóstico , Microambiente Tumoral
3.
RNA ; 26(9): 1104-1117, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32393525

RESUMO

Noncoding RNA has a proven ability to direct and regulate chromatin modifications by acting as scaffolds between DNA and histone-modifying complexes. However, it is unknown if ncRNA plays any role in DNA replication and epigenome maintenance, including histone eviction and reinstallment of histone modifications after genome duplication. Isolation of nascent chromatin has identified a large number of RNA-binding proteins in addition to unknown components of the replication and epigenetic maintenance machinery. Here, we isolated and characterized long and short RNAs associated with nascent chromatin at active replication forks and track RNA composition during chromatin maturation across the cell cycle. Shortly after fork passage, GA-rich-, alpha- and TElomeric Repeat-containing RNAs (TERRA) are associated with replicated DNA. These repeat containing RNAs arise from loci undergoing replication, suggesting an interaction in cis. Post-replication during chromatin maturation, and even after mitosis in G1, the repeats remain enriched on DNA. This suggests that specific types of repeat RNAs are transcribed shortly after DNA replication and stably associate with their loci of origin throughout the cell cycle. The presented method and data enable studies of RNA interactions with replication forks and post-replicative chromatin and provide insights into how repeat RNAs and their engagement with chromatin are regulated with respect to DNA replication and across the cell cycle.


Assuntos
Replicação do DNA/genética , DNA/genética , Processamento de Proteína Pós-Traducional/genética , RNA/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Cromatina/genética , Células HeLa , Histonas/genética , Humanos
4.
RNA Biol ; 18(11): 1905-1919, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33499731

RESUMO

RNA modifications are dynamic chemical entities that expand the RNA lexicon and regulate RNA fate. The most abundant modification present in mRNAs, N6-methyladenosine (m6A), has been implicated in neurogenesis and memory formation. However, whether additional RNA modifications may be playing a role in neuronal functions and in response to environmental queues is largely unknown. Here we characterize the biochemical function and cellular dynamics of two human RNA methyltransferases previously associated with neurological dysfunction, TRMT1 and its homolog, TRMT1-like (TRMT1L). Using a combination of next-generation sequencing, LC-MS/MS, patient-derived cell lines and knockout mouse models, we confirm the previously reported dimethylguanosine (m2,2G) activity of TRMT1 in tRNAs, as well as reveal that TRMT1L, whose activity was unknown, is responsible for methylating a subset of cytosolic tRNAAla(AGC) isodecoders at position 26. Using a cellular in vitro model that mimics neuronal activation and long term potentiation, we find that both TRMT1 and TRMT1L change their subcellular localization upon neuronal activation. Specifically, we observe a major subcellular relocalization from mitochondria and other cytoplasmic domains (TRMT1) and nucleoli (TRMT1L) to different small punctate compartments in the nucleus, which are as yet uncharacterized. This phenomenon does not occur upon heat shock, suggesting that the relocalization of TRMT1 and TRMT1L is not a general reaction to stress, but rather a specific response to neuronal activation. Our results suggest that subcellular relocalization of RNA modification enzymes may play a role in neuronal plasticity and transmission of information, presumably by addressing new targets.


Assuntos
Encéfalo/metabolismo , Núcleo Celular/metabolismo , Neuroblastoma/patologia , Neurônios/metabolismo , Frações Subcelulares/metabolismo , tRNA Metiltransferases/metabolismo , Animais , Feminino , Camundongos , Camundongos Knockout , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neurônios/citologia , tRNA Metiltransferases/genética
5.
Biochim Biophys Acta ; 1861(2): 138-147, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26615875

RESUMO

Sphingolipid metabolites have emerged playing important roles in the pathogenesis of nonalcoholic fatty liver disease, whereas the underlying mechanism remains largely unknown. In the present study, we provide both in vitro and in vivo evidence showing a pathogenic role of sphingosine kinase 1 (SphK1) in hepatocellular steatosis. We found that levels of SphK1 expression were significantly increased in steatotic hepatocytes. Enforced overexpression of SphK1 or treatment with sphingosine 1-phosphate (S1P) markedly enhanced hepatic lipid accumulation. In contrast, the siRNA-mediated knockdown of SphK1 or S1P receptors, S1P2 and S1P3, profoundly inhibited lipid accumulation in hepatocytes. Moreover, Sphk1(-/-) mice exhibited a significant amelioration of hepatosteatosis under diet-induced obese (DIO) conditions, compared to wild-type littermates. In addition, DIO-induced up-regulation of PPARγ and its target genes were significantly reduced by SphK1 deficiency. Furthermore, treatment of hepatocytes with S1P induces a dose-dependent increase in PPARγ expression at the transcriptional level. Blockage of S1P receptors and the Akt-mTOR signaling profoundly inhibited S1P-induced PPARγ expression. Notably, down-regulation of PPARγ by using its siRNA significantly diminished the pro-steatotic effect of SphK1/S1P. Thus, the study demonstrates a new pathway connecting SphK1 and PPARγ involved in the pathogenesis of hepatocellular steatosis.


Assuntos
Fígado Gorduroso/genética , Hepatócitos/metabolismo , Obesidade/genética , PPAR gama/genética , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Animais , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/efeitos adversos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Regulação da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Lisofosfolipídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , PPAR gama/antagonistas & inibidores , PPAR gama/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Receptores de Esfingosina-1-Fosfato , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Transcrição Gênica
6.
BMC Genomics ; 18(1): 250, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28335720

RESUMO

BACKGROUND: DNA methylation is a key modulator of gene expression in mammalian development and cellular differentiation, including neurons. To date, the role of DNA modifications in long-term potentiation (LTP) has not been explored. RESULTS: To investigate the occurrence of DNA methylation changes in LTP, we undertook the first detailed study to describe the methylation status of all known LTP-associated genes during LTP induction in the dentate gyrus of live rats. Using a methylated DNA immunoprecipitation (MeDIP)-array, together with previously published matched RNA-seq and public histone modification data, we discover widespread changes in methylation status of LTP-genes. We further show that the expression of many LTP-genes is correlated with their methylation status. We show that these correlated genes are enriched for RNA-processing, active histone marks, and specific transcription factors. These data reveal that the synaptic activity-evoked methylation changes correlates with pre-existing activation of the chromatin landscape. Finally, we show that methylation of Brain-derived neurotrophic factor (Bdnf) CpG-islands correlates with isoform switching from transcripts containing exon IV to exon I. CONCLUSIONS: Together, these data provide the first evidence of widespread regulation of methylation status in LTP-associated genes.


Assuntos
Encéfalo/fisiologia , Metilação de DNA , Potenciação de Longa Duração/genética , Plasticidade Neuronal/genética , Regiões Promotoras Genéticas/genética , Adulto , Encéfalo/metabolismo , Cromatina/metabolismo , Ilhas de CpG/genética , Regulação da Expressão Gênica , Loci Gênicos/genética , Histonas/metabolismo , Humanos , Memória/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos
7.
J Biol Chem ; 290(38): 23282-90, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26240153

RESUMO

Aberrant deposition of fat including free fatty acids in the liver often causes damage to hepatocytes, namely lipotoxicity, which is a key pathogenic event in the development and progression of fatty liver diseases. This study demonstrates a pivotal role of sphingosine kinase 1 (SphK1) in protecting hepatocytes from lipotoxicity. Exposure of primary murine hepatocytes to palmitate resulted in dose-dependent cell death, which was enhanced significantly in Sphk1-deficient cells. In keeping with this, expression of dominant-negative mutant SphK1 also markedly promoted palmitate-induced cell death. In contrast, overexpression of wild-type SphK1 profoundly protected hepatocytes from lipotoxicity. Mechanistically, the protective effect of SphK1 is attributable to suppression of ER stress-mediated pro-apoptotic pathways, as reflected in the inhibition of IRE1α activation, XBP1 splicing, JNK phosphorylation, and CHOP induction. Of note, SphK1 inhibited the IRE1α pathway by reducing IRE1α expression at the transcriptional level. Moreover, S1P mimicked the effect of SphK1, suppressing IRE1α expression in a receptor-dependent manner. Furthermore, enforced overexpression of IRE1α significantly blocked the protective effect of SphK1 against lipotoxicity. Therefore, this study provides new insights into the role of SphK1 in hepatocyte survival and uncovers a novel mechanism for protection against ER stress-mediated cell death.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Endorribonucleases/biossíntese , Inibidores Enzimáticos/efeitos adversos , Hepatócitos/metabolismo , Ácido Palmítico/efeitos adversos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Serina-Treonina Quinases/biossíntese , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Endorribonucleases/genética , Inibidores Enzimáticos/farmacologia , Hepatócitos/patologia , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Ácido Palmítico/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Serina-Treonina Quinases/genética , Splicing de RNA/efeitos dos fármacos , Splicing de RNA/genética , Fatores de Transcrição de Fator Regulador X , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Proteína 1 de Ligação a X-Box
8.
Front Immunol ; 13: 811525, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464428

RESUMO

Women with autoimmune and inflammatory aetiologies can exhibit reduced fecundity. TNFAIP3 is a master negative regulator of inflammation, and has been linked to many inflammatory conditions by genome wide associations studies, however its role in fertility remains unknown. Here we show that mice harbouring a mild Tnfaip3 reduction-of-function coding variant (Tnfaip3I325N) that reduces the threshold for inflammatory NF-κB activation, exhibit reduced fecundity. Sub-fertility in Tnfaip3I325N mice is associated with irregular estrous cycling, low numbers of ovarian secondary follicles, impaired mammary gland development and insulin resistance. These pathological features are associated with infertility in human subjects. Transplantation of Tnfaip3I325N ovaries, mammary glands or pancreatic islets into wild-type recipients rescued estrous cycling, mammary branching and hyperinsulinemia respectively, pointing towards a cell-extrinsic hormonal mechanism. Examination of hypothalamic brain sections revealed increased levels of microglial activation with reduced levels of luteinizing hormone. TNFAIP3 coding variants may offer one contributing mechanism for the cause of sub-fertility observed across otherwise healthy populations as well as for the wide variety of auto-inflammatory conditions to which TNFAIP3 is associated. Further, TNFAIP3 represents a molecular mechanism that links heightened immunity with neuronal inflammatory homeostasis. These data also highlight that tuning-up immunity with TNFAIP3 comes with the potentially evolutionary significant trade-off of reduced fertility.


Assuntos
Infertilidade Feminina , Animais , Feminino , Regulação da Expressão Gênica , Humanos , Infertilidade Feminina/genética , Inflamação/genética , Camundongos , Transdução de Sinais , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética
9.
Genomics Proteomics Bioinformatics ; 19(2): 223-242, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33307245

RESUMO

Human pluripotent stem cell (hPSC)-derived progenies are immature versions of cells, presenting a potential limitation to the accurate modelling of diseases associated with maturity or age. Hence, it is important to characterise how closely cells used in culture resemble their native counterparts. In order to select appropriate time points of retinal pigment epithelium (RPE) cultures that reflect native counterparts, we characterised the transcriptomic profiles of the hPSC-derived RPE cells from 1- and 12-month cultures. We differentiated the human embryonic stem cell line H9 into RPE cells, performed single-cell RNA-sequencing of a total of 16,576 cells to assess the molecular changes of the RPE cells across these two culture time points. Our results indicate the stability of the RPE transcriptomic signature, with no evidence of an epithelial-mesenchymal transition, and with the maturing populations of the RPE observed with time in culture. Assessment of Gene Ontology pathways revealed that as the cultures age, RPE cells upregulate expression of genes involved in metal binding and antioxidant functions. This might reflect an increased ability to handle oxidative stress as cells mature. Comparison with native human RPE data confirms a maturing transcriptional profile of RPE cells in culture. These results suggest that long-term in vitro culture of RPE cells allows the modelling of specific phenotypes observed in native mature tissues. Our work highlights the transcriptional landscape of hPSC-derived RPE cells as they age in culture, which provides a reference for native and patient samples to be benchmarked against.


Assuntos
Células-Tronco Pluripotentes , Epitélio Pigmentado da Retina , Diferenciação Celular/genética , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Transcriptoma
10.
Cell Rep ; 36(12): 109722, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34551299

RESUMO

DNA replication timing and three-dimensional (3D) genome organization are associated with distinct epigenome patterns across large domains. However, whether alterations in the epigenome, in particular cancer-related DNA hypomethylation, affects higher-order levels of genome architecture is still unclear. Here, using Repli-Seq, single-cell Repli-Seq, and Hi-C, we show that genome-wide methylation loss is associated with both concordant loss of replication timing precision and deregulation of 3D genome organization. Notably, we find distinct disruption in 3D genome compartmentalization, striking gains in cell-to-cell replication timing heterogeneity and loss of allelic replication timing in cancer hypomethylation models, potentially through the gene deregulation of DNA replication and genome organization pathways. Finally, we identify ectopic H3K4me3-H3K9me3 domains from across large hypomethylated domains, where late replication is maintained, which we purport serves to protect against catastrophic genome reorganization and aberrant gene transcription. Our results highlight a potential role for the methylome in the maintenance of 3D genome regulation.


Assuntos
Metilação de DNA , Período de Replicação do DNA/fisiologia , Genoma Humano , Linhagem Celular Tumoral , Cromatina/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Bases de Dados Genéticas , Expressão Gênica , Histonas/metabolismo , Humanos , Análise de Sequência de DNA/métodos
11.
Nat Genet ; 53(9): 1334-1347, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34493872

RESUMO

Breast cancers are complex cellular ecosystems where heterotypic interactions play central roles in disease progression and response to therapy. However, our knowledge of their cellular composition and organization is limited. Here we present a single-cell and spatially resolved transcriptomics analysis of human breast cancers. We developed a single-cell method of intrinsic subtype classification (SCSubtype) to reveal recurrent neoplastic cell heterogeneity. Immunophenotyping using cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) provides high-resolution immune profiles, including new PD-L1/PD-L2+ macrophage populations associated with clinical outcome. Mesenchymal cells displayed diverse functions and cell-surface protein expression through differentiation within three major lineages. Stromal-immune niches were spatially organized in tumors, offering insights into antitumor immune regulation. Using single-cell signatures, we deconvoluted large breast cancer cohorts to stratify them into nine clusters, termed 'ecotypes', with unique cellular compositions and clinical outcomes. This study provides a comprehensive transcriptional atlas of the cellular architecture of breast cancer.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Análise de Célula Única , Transcriptoma/genética , Linfócitos B/imunologia , Antígeno B7-H1/genética , Biomarcadores Tumorais/genética , Neoplasias da Mama/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Endoteliais/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Proteínas de Membrana/genética , Células Mieloides/imunologia , Células Mieloides/metabolismo , Análise de Sequência de RNA , Microambiente Tumoral , Proteínas Supressoras de Tumor/genética
12.
Lab Chip ; 19(10): 1706-1727, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-30997473

RESUMO

Droplet based scRNA-seq systems such as Drop-seq, inDrop and Chromium 10X have been the catalyst for the wide adoption of high-throughput scRNA-seq technologies in the research laboratory. In order to understand the capabilities of these systems to deeply interrogate biology; here we provide a practical guide through all the steps involved in a typical scRNA-seq experiment. Through comparing and contrasting these three main droplet based systems (and their derivatives), we provide an overview of all critical considerations in obtaining high quality and biologically relevant data. We also discuss the limitations of these systems and how they fit into the emerging field of Genomic Cytometry.


Assuntos
RNA-Seq/instrumentação , RNA-Seq/métodos , RNA/genética , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos , Humanos , Tamanho da Partícula , Propriedades de Superfície
13.
Front Genet ; 10: 309, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031799

RESUMO

The human brain is one of the last frontiers of biomedical research. Genome-wide association studies (GWAS) have succeeded in identifying thousands of haplotype blocks associated with a range of neuropsychiatric traits, including disorders such as schizophrenia, Alzheimer's and Parkinson's disease. However, the majority of single nucleotide polymorphisms (SNPs) that mark these haplotype blocks fall within non-coding regions of the genome, hindering their functional validation. While some of these GWAS loci may contain cis-acting regulatory DNA elements such as enhancers, we hypothesized that many are also transcribed into non-coding RNAs that are missing from publicly available transcriptome annotations. Here, we use targeted RNA capture ('RNA CaptureSeq') in combination with nanopore long-read cDNA sequencing to transcriptionally profile 1,023 haplotype blocks across the genome containing non-coding GWAS SNPs associated with neuropsychiatric traits, using post-mortem human brain tissue from three neurologically healthy donors. We find that the majority (62%) of targeted haplotype blocks, including 13% of intergenic blocks, are transcribed into novel, multi-exonic RNAs, most of which are not yet recorded in GENCODE annotations. We validated our findings with short-read RNA-seq, providing orthogonal confirmation of novel splice junctions and enabling a quantitative assessment of the long-read assemblies. Many novel transcripts are supported by independent evidence of transcription including cap analysis of gene expression (CAGE) data and epigenetic marks, and some show signs of potential functional roles. We present these transcriptomes as a preliminary atlas of non-coding transcription in human brain that can be used to connect neurological phenotypes with gene expression.

14.
Transl Psychiatry ; 8(1): 89, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29691375

RESUMO

There is a strong association between cannabis use and schizophrenia but the underlying cellular links are poorly understood. Neurons derived from human-induced pluripotent stem cells (hiPSCs) offer a platform for investigating both baseline and dynamic changes in human neural cells. Here, we exposed neurons derived from hiPSCs to Δ9-tetrahydrocannabinol (THC), and identified diagnosis-specific differences not detectable in vehicle-controls. RNA transcriptomic analyses revealed that THC administration, either by acute or chronic exposure, dampened the neuronal transcriptional response following potassium chloride (KCl)-induced neuronal depolarization. THC-treated neurons displayed significant synaptic, mitochondrial, and glutamate signaling alterations that may underlie their failure to activate appropriately; this blunted response resembles effects previously observed in schizophrenia hiPSC- derived neurons. Furthermore, we show a significant alteration in THC-related genes associated with autism and intellectual disability, suggesting shared molecular pathways perturbed in neuropsychiatric disorders that are exacerbated by THC.


Assuntos
Dronabinol/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Transtornos Mentais/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transtorno Autístico/genética , Sequência de Bases , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ácido Glutâmico/metabolismo , Humanos , Deficiência Intelectual/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Densidade Pós-Sináptica/metabolismo , Esquizofrenia/genética , Transcriptoma
15.
Oncotarget ; 9(21): 15635-15649, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29643998

RESUMO

Primary liver cancer is the 3rd leading cause of cancer deaths worldwide with very few effective treatments. Sphingosine kinase 1 (SphK1), a key regulator of sphingolipid metabolites, is over-expressed in human hepatocellular carcinoma (HCC) and our previous studies have shown that SphK1 is important in liver injury. We aimed to explore the role of SphK1 specifically in liver tumorigenesis using the SphK1 knockout (SphK1-/-) mouse. SphK1 deletion significantly reduced the number and the size of DEN-induced liver cancers in mice. Mechanistically, fewer proliferating but more apoptotic and senescent cells were detected in SphK1 deficient tumors compared to WT tumors. There was an increase in sphingosine rather than a decrease in sphingosine 1-phosphate (S1P) in SphK1 deficient tumors. Furthermore, the STAT3-S1PR pathway that has been reported previously to mediate the effect of SphK1 on colorectal cancers was not altered by SphK1 deletion in liver cancer. Instead, c-Myc protein expression was down-regulated by SphK1 deletion. In conclusion, this is the first in vivo evidence that SphK1 contributes to hepatocarcinogenesis. However, the downstream signaling pathways impacting on the development of HCC via SphK1 are organ specific providing further evidence that simply transferring known oncogenic molecular pathway targeting into HCC is not always valid.

16.
Front Neurosci ; 12: 243, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29719497

RESUMO

The amount of regulatory RNA encoded in the genome and the extent of RNA editing by the post-transcriptional deamination of adenosine to inosine (A-I) have increased with developmental complexity and may be an important factor in the cognitive evolution of animals. The newest member of the A-I editing family of ADAR proteins, the vertebrate-specific ADAR3, is highly expressed in the brain, but its functional significance is unknown. In vitro studies have suggested that ADAR3 acts as a negative regulator of A-I RNA editing but the scope and underlying mechanisms are also unknown. Meta-analysis of published data indicates that mouse Adar3 expression is highest in the hippocampus, thalamus, amygdala, and olfactory region. Consistent with this, we show that mice lacking exon 3 of Adar3 (which encodes two double stranded RNA binding domains) have increased levels of anxiety and deficits in hippocampus-dependent short- and long-term memory formation. RNA sequencing revealed a dysregulation of genes involved in synaptic function in the hippocampi of Adar3-deficient mice. We also show that ADAR3 transiently translocates from the cytoplasm to the nucleus upon KCl-mediated activation in SH-SY5Y cells. These results indicate that ADAR3 contributes to cognitive processes in mammals.

17.
Cell Metab ; 27(5): 1096-1110.e5, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29681442

RESUMO

Chronic inflammation is a hallmark of obesity and is linked to the development of numerous diseases. The activation of toll-like receptor 4 (TLR4) by long-chain saturated fatty acids (lcSFAs) is an important process in understanding how obesity initiates inflammation. While experimental evidence supports an important role for TLR4 in obesity-induced inflammation in vivo, via a mechanism thought to involve direct binding to and activation of TLR4 by lcSFAs, several lines of evidence argue against lcSFAs being direct TLR4 agonists. Using multiple orthogonal approaches, we herein provide evidence that while loss-of-function models confirm that TLR4 does, indeed, regulate lcSFA-induced inflammation, TLR4 is not a receptor for lcSFAs. Rather, we show that TLR4-dependent priming alters cellular metabolism, gene expression, lipid metabolic pathways, and membrane lipid composition, changes that are necessary for lcSFA-induced inflammation. These results reconcile previous discordant observations and challenge the prevailing view of TLR4's role in initiating obesity-induced inflammation.


Assuntos
Inflamação/metabolismo , Macrófagos/metabolismo , Obesidade/metabolismo , Palmitatos/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Humanos , Inflamação/etiologia , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Obesidade/complicações , Transdução de Sinais
18.
Sci Rep ; 7(1): 6731, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28751729

RESUMO

Cellular responses to stimuli are rapid and continuous and yet the vast majority of investigations of transcriptional responses during developmental transitions typically use long interval time courses; limiting the available interpretive power. Moreover, such experiments typically focus on protein-coding transcripts, ignoring the important impact of long noncoding RNAs. We therefore evaluated coding and noncoding expression dynamics at unprecedented temporal resolution (6-hourly) in differentiating mouse embryonic stem cells and report new insight into molecular processes and genome organization. We present a highly resolved differentiation cascade that exhibits coding and noncoding transcriptional alterations, transcription factor network interactions and alternative splicing events, little of which can be resolved by long-interval developmental time-courses. We describe novel short lived and cycling patterns of gene expression and dissect temporally ordered gene expression changes in response to transcription factors. We elucidate patterns in gene co-expression across the genome, describe asynchronous transcription at bidirectional promoters and functionally annotate known and novel regulatory lncRNAs. These findings highlight the complex and dynamic molecular events underlying mammalian differentiation that can only be observed though a temporally resolved time course.


Assuntos
Corpos Embrioides/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fases de Leitura Aberta , RNA Longo não Codificante/genética , Transcriptoma , Processamento Alternativo , Animais , Diferenciação Celular , Mapeamento Cromossômico , Corpos Embrioides/citologia , Perfilação da Expressão Gênica , Camundongos , Anotação de Sequência Molecular , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Regiões Promotoras Genéticas , RNA Longo não Codificante/classificação , RNA Longo não Codificante/metabolismo , Fatores de Tempo , Fatores de Transcrição/classificação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Mol Cancer Res ; 15(11): 1558-1569, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28751461

RESUMO

Esophageal adenocarcinoma (EAC) has one of the fastest increases in incidence of any cancer, along with poor five-year survival rates. Barrett's esophagus (BE) is the main risk factor for EAC; however, the mechanisms driving EAC development remain poorly understood. Here, transcriptomic profiling was performed using RNA-sequencing (RNA-seq) on premalignant and malignant Barrett's tissues to better understand this disease. Machine-learning and network analysis methods were applied to discover novel driver genes for EAC development. Identified gene expression signatures for the distinction of EAC from BE were validated in separate datasets. An extensive analysis of the noncoding RNA (ncRNA) landscape was performed to determine the involvement of novel transcriptomic elements in Barrett's disease and EAC. Finally, transcriptomic mutational investigation of genes that are recurrently mutated in EAC was performed. Through these approaches, novel driver genes were discovered for EAC, which involved key cell cycle and DNA repair genes, such as BRCA1 and PRKDC. A novel 4-gene signature (CTSL, COL17A1, KLF4, and E2F3) was identified, externally validated, and shown to provide excellent distinction of EAC from BE. Furthermore, expression changes were observed in 685 long noncoding RNAs (lncRNA) and a systematic dysregulation of repeat elements across different stages of Barrett's disease, with wide-ranging downregulation of Alu elements in EAC. Mutational investigation revealed distinct pathways activated between EAC tissues with or without TP53 mutations compared with Barrett's disease. In summary, transcriptome sequencing revealed altered expression of numerous novel elements, processes, and networks in EAC and premalignant BE.Implications: This study identified opportunities to improve early detection and treatment of patients with BE and esophageal adenocarcinoma. Mol Cancer Res; 15(11); 1558-69. ©2017 AACR.


Assuntos
Adenocarcinoma/genética , Esôfago de Barrett/genética , Neoplasias Esofágicas/genética , Sequenciamento do Exoma/métodos , Perfilação da Expressão Gênica/métodos , Mutação , Biomarcadores Tumorais/genética , Proteínas de Ciclo Celular/genética , Feminino , Redes Reguladoras de Genes , Humanos , Fator 4 Semelhante a Kruppel , Aprendizado de Máquina , Masculino , RNA não Traduzido/genética , Análise de Sequência de RNA/métodos
20.
Sci Rep ; 7: 40127, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28054653

RESUMO

Despite their abundance, the molecular functions of long non-coding RNAs in mammalian nervous systems remain poorly understood. Here we show that the long non-coding RNA, NEAT1, directly modulates neuronal excitability and is associated with pathological seizure states. Specifically, NEAT1 is dynamically regulated by neuronal activity in vitro and in vivo, binds epilepsy-associated potassium channel-interacting proteins including KCNAB2 and KCNIP1, and induces a neuronal hyper-potentiation phenotype in iPSC-derived human cortical neurons following antisense oligonucleotide knockdown. Next generation sequencing reveals a strong association of NEAT1 with increased ion channel gene expression upon activation of iPSC-derived neurons following NEAT1 knockdown. Furthermore, we show that while NEAT1 is acutely down-regulated in response to neuronal activity, repeated stimulation results in NEAT1 becoming chronically unresponsive in independent in vivo rat model systems relevant to temporal lobe epilepsy. We extended previous studies showing increased NEAT1 expression in resected cortical tissue from high spiking regions of patients suffering from intractable seizures. Our results indicate a role for NEAT1 in modulating human neuronal activity and suggest a novel mechanistic link between an activity-dependent long non-coding RNA and epilepsy.


Assuntos
Encéfalo/fisiologia , Excitabilidade Cortical , Neurônios/fisiologia , RNA Longo não Codificante/metabolismo , Convulsões/patologia , Animais , Células Cultivadas , Humanos , Proteínas Interatuantes com Canais de Kv/metabolismo , Células-Tronco Pluripotentes/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Ligação Proteica , Ratos , Superfamília Shaker de Canais de Potássio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa