Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35743299

RESUMO

Wound healing pathologies are an increasing problem in ageing societies. Chronic, non-healing wounds, which cause high morbidity and severely reduce the quality of life of affected individuals, are frequently observed in aged individuals and people suffering from diseases affected by the Western lifestyle, such as diabetes. Causal treatments that support proper wound healing are still scarce. Here, we performed expression proteomics to study the effects of the small molecule TOP-N53 on primary human skin fibroblasts and keratinocytes. TOP-N53 is a dual-acting nitric oxide donor and phosphodiesterase-5 inhibitor increasing cGMP levels to support proper wound healing. In contrast to keratinocytes, which did not exhibit global proteome alterations, TOP-N53 had profound effects on the proteome of skin fibroblasts. In fibroblasts, TOP-N53 activated the cytoprotective, lysosomal degradation pathway autophagy and induced the expression of the selective autophagy receptor p62/SQSTM1. Thus, activation of autophagy might in part be responsible for beneficial effects of TOP-N53.


Assuntos
Doadores de Óxido Nítrico , Inibidores da Fosfodiesterase 5 , Idoso , Autofagia , Fibroblastos/metabolismo , Humanos , Queratinócitos/metabolismo , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Inibidores da Fosfodiesterase 5/farmacologia , Proteoma/metabolismo , Qualidade de Vida , Pele/metabolismo
2.
EMBO J ; 36(5): 646-663, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28093501

RESUMO

As a central element within the RAS/ERK pathway, the serine/threonine kinase BRAF plays a key role in development and homeostasis and represents the most frequently mutated kinase in tumors. Consequently, it has emerged as an important therapeutic target in various malignancies. Nevertheless, the BRAF activation cycle still raises many mechanistic questions as illustrated by the paradoxical action and side effects of RAF inhibitors. By applying SEC-PCP-SILAC, we analyzed protein-protein interactions of hyperactive BRAFV600E and wild-type BRAF (BRAFWT). We identified two macromolecular, cytosolic BRAF complexes of distinct molecular composition and phosphorylation status. Hyperactive BRAFV600E resides in large complexes of higher molecular mass and activity, while BRAFWT is confined to smaller, slightly less active complexes. However, expression of oncogenic K-RasG12V, either by itself or in combination with RAF dimer promoting inhibitors, induces the incorporation of BRAFWT into large, active complexes, whereas pharmacological inhibition of BRAFV600E has the opposite effect. Thus, the quaternary structure of BRAF complexes is shaped by its activation status, the conformation of its kinase domain, and clinically relevant inhibitors.


Assuntos
Multimerização Proteica , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Animais , Células Cultivadas , Cromatografia em Gel , Humanos , Espectrometria de Massas , Camundongos , Fosforilação , Conformação Proteica
3.
Mol Cell Proteomics ; 17(10): 1909-1921, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29980615

RESUMO

Seasonal epidemics of influenza A virus are a major cause of severe illness and are of high socio-economic relevance. For the design of effective antiviral therapies, a detailed knowledge of pathways perturbed by virus infection is critical. We performed comprehensive expression and organellar proteomics experiments to study the cellular consequences of influenza A virus infection using three human epithelial cell lines derived from human lung carcinomas: A549, Calu-1 and NCI-H1299. As a common response, the type I interferon pathway was up-regulated upon infection. Interestingly, influenza A virus infection led to numerous cell line-specific responses affecting both protein abundance as well as subcellular localization. In A549 cells, the vesicular compartment appeared expanded after virus infection. The composition of autophagsomes was altered by targeting of ribosomes, viral mRNA and proteins to these double membrane vesicles. Thus, autophagy may support viral protein translation by promoting the clustering of the respective molecular machinery in autophagosomes in a cell line-dependent manner.


Assuntos
Autofagossomos/metabolismo , Vírus da Influenza A/metabolismo , Proteínas Ribossômicas/metabolismo , Autofagia , Linhagem Celular Tumoral , Humanos , Influenza Humana/metabolismo , Influenza Humana/patologia , Influenza Humana/virologia , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Ribossomos/metabolismo
4.
Development ; 138(21): 4649-60, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21989912

RESUMO

Morphogenesis represents a phase of development during which cell fates are executed. The conserved hox genes are key cell fate determinants during metazoan development, but their role in controlling organ morphogenesis is less understood. Here, we show that the C. elegans hox gene lin-39 regulates epidermal morphogenesis via its novel target, the essential zinc finger protein VAB-23. During the development of the vulva, the egg-laying organ of the hermaphrodite, the EGFR/RAS/MAPK signaling pathway activates, together with LIN-39 HOX, the expression of VAB-23 in the primary cell lineage to control the formation of the seven vulval toroids. VAB-23 regulates the formation of homotypic contacts between contralateral pairs of cells with the same sub-fates at the vulval midline by inducing smp-1 (semaphorin) transcription. In addition, VAB-23 prevents ectopic vulval cell fusions by negatively regulating expression of the fusogen eff-1. Thus, LIN-39 and the EGFR/RAS/MAPK signaling pathway, which specify cell fates earlier during vulval induction, continue to act during the subsequent phase of cell fate execution by regulating various aspects of epidermal morphogenesis. Vulval cell fate specification and execution are, therefore, tightly coupled processes.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/anatomia & histologia , Caenorhabditis elegans/embriologia , Proteínas de Transporte/metabolismo , Receptores ErbB/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Morfogênese/fisiologia , Transdução de Sinais/fisiologia , Animais , Sequência de Bases , Biomarcadores/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Fusão Celular , Linhagem da Célula , Receptores ErbB/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Proteínas de Homeodomínio/genética , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Quinases Ativadas por Mitógeno/genética , Dados de Sequência Molecular , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco
5.
Autophagy ; 19(10): 2819-2820, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36847414

RESUMO

The inflammatory repressor TNIP1/ABIN-1 is important for keeping in check inflammatory and cell-death pathways to avoid potentially dangerous sustained activation of these pathways. We have now found that TNIP1 is rapidly degraded by selective macroautophagy/autophagy early (0-4 h) after activation of TLR3 by poly(I:C)-treatment to allow expression of pro-inflammatory genes and proteins. A few hours later (6 h), TNIP1 levels rise again to counteract sustained inflammatory signaling. TBK1-mediated phosphorylation of a TNIP1 LIR motif regulates selective autophagy of TNIP1 by stimulating interaction with Atg8-family proteins. This is a novel level of regulation of TNIP1, whose protein level is crucial for controlling inflammatory signaling.


Assuntos
Autofagia , Proteínas de Ligação a DNA , Proteínas Associadas aos Microtúbulos , Humanos , Motivos de Aminoácidos , Autofagia/fisiologia , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo
6.
J Cell Biol ; 222(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36574265

RESUMO

Limitation of excessive inflammation due to selective degradation of pro-inflammatory proteins is one of the cytoprotective functions attributed to autophagy. In the current study, we highlight that selective autophagy also plays a vital role in promoting the establishment of a robust inflammatory response. Under inflammatory conditions, here TLR3-activation by poly(I:C) treatment, the inflammation repressor TNIP1 (TNFAIP3 interacting protein 1) is phosphorylated by Tank-binding kinase 1 (TBK1) activating an LIR motif that leads to the selective autophagy-dependent degradation of TNIP1, supporting the expression of pro-inflammatory genes and proteins. This selective autophagy efficiently reduces TNIP1 protein levels early (0-4 h) upon poly(I:C) treatment to allow efficient initiation of the inflammatory response. At 6 h, TNIP1 levels are restored due to increased transcription avoiding sustained inflammation. Thus, similarly as in cancer, autophagy may play a dual role in controlling inflammation depending on the exact state and timing of the inflammatory response.


Assuntos
Autofagia , Proteínas de Ligação a DNA , Inflamação , Proteínas Serina-Treonina Quinases , Humanos , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
7.
Nat Commun ; 13(1): 4685, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948564

RESUMO

The protein kinase mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth and proliferation, supporting anabolic reactions and inhibiting catabolic pathways like autophagy. Its hyperactivation is a frequent event in cancer promoting tumor cell proliferation. Several intracellular membrane-associated mTORC1 pools have been identified, linking its function to distinct subcellular localizations. Here, we characterize the N-terminal kinase-like protein SCYL1 as a Golgi-localized target through which mTORC1 controls organelle distribution and extracellular vesicle secretion in breast cancer cells. Under growth conditions, SCYL1 is phosphorylated by mTORC1 on Ser754, supporting Golgi localization. Upon mTORC1 inhibition, Ser754 dephosphorylation leads to SCYL1 displacement to endosomes. Peripheral, dephosphorylated SCYL1 causes Golgi enlargement, redistribution of early and late endosomes and increased extracellular vesicle release. Thus, the mTORC1-controlled phosphorylation status of SCYL1 is an important determinant regulating subcellular distribution and function of endolysosomal compartments. It may also explain the pathophysiology underlying human genetic diseases such as CALFAN syndrome, which is caused by loss-of-function of SCYL1.


Assuntos
Complexo de Golgi , Lisossomos , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexo de Golgi/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosforilação
8.
Methods Mol Biol ; 1880: 341-357, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30610709

RESUMO

Mass spectrometry (MS)-based identification and characterization of protein complexes is becoming a prerequisite for in-depth biochemical analyses of intracellular processes. Here, we describe two state-of-the-art MS-based approaches to characterize protein-protein interactions and multi-protein complexes involved in autophagy in mammalian cells. The combination of affinity purification (AP)-MS, which identifies binary protein-protein interactions, with size-exclusion chromatography (SEC)-protein correlation profiling (PCP), which helps monitor protein complex assemblies, is a powerful tool to acquire a full overview of the interlinkage and regulation of novel multi-protein complexes that might play a role in autophagy.


Assuntos
Autofagia/fisiologia , Complexos Multiproteicos/metabolismo , Mapeamento de Interação de Proteínas/métodos , Espectrometria de Massas em Tandem/métodos , Autofagia/efeitos dos fármacos , Cromatografia de Afinidade/instrumentação , Cromatografia de Afinidade/métodos , Cromatografia em Gel/instrumentação , Cromatografia em Gel/métodos , Humanos , Células MCF-7 , Macrolídeos/farmacologia , Mapeamento de Interação de Proteínas/instrumentação , Multimerização Proteica/fisiologia , Espectrometria de Massas em Tandem/instrumentação
9.
Oncotarget ; 8(23): 37478-37490, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28415582

RESUMO

The anthraquinone emodin has been shown to have antineoplastic properties and a wealth of unconnected effects have been linked to its use, most of which are likely secondary outcomes of the drug treatment. The primary activity of emodin on cells has remained unknown. In the present study we demonstrate dramatic and extensive effects of emodin on the redox state of cells and on mitochondrial homeostasis, irrespectively of the cell type and organism, ranging from the yeast Saccharomyces cerevisiae to human cell lines and primary cells. Emodin binds to redox-active enzymes and its effectiveness depends on the oxidative and respiratory status of cells. We show that cells with efficient respiratory metabolism are less susceptible to emodin, whereas cells under glycolytic metabolism are more vulnerable to the compound. Our findings indicate that emodin acts in a similar way as known uncouplers of the mitochondrial electron transport chain and causes oxidative stress that particularly disturbs cancer cells.


Assuntos
Proliferação de Células/efeitos dos fármacos , Emodina/farmacologia , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células A549 , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Células HeLa , Humanos , Células MCF-7 , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Proteômica/métodos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
10.
PLoS One ; 5(10): e13681, 2010 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-21060680

RESUMO

Biochemical purifications from mammalian cells and Xenopus oocytes revealed that vertebrate Mi-2 proteins reside in multisubunit NuRD (Nucleosome Remodeling and Deacetylase) complexes. Since all NuRD subunits are highly conserved in the genomes of C. elegans and Drosophila, it was suggested that NuRD complexes also exist in invertebrates. Recently, a novel dMec complex, composed of dMi-2 and dMEP-1 was identified in Drosophila. The genome of C. elegans encodes two highly homologous Mi-2 orthologues, LET-418 and CHD-3. Here we demonstrate that these proteins define at least three different protein complexes, two distinct NuRD complexes and one MEC complex. The two canonical NuRD complexes share the same core subunits HDA-1/HDAC, LIN-53/RbAp and LIN-40/MTA, but differ in their Mi-2 orthologues LET-418 or CHD-3. LET-418 but not CHD-3, interacts with the Krüppel-like protein MEP-1 in a distinct complex, the MEC complex. Based on microarrays analyses, we propose that MEC constitutes an important LET-418 containing regulatory complex during C. elegans embryonic and early larval development. It is required for the repression of germline potential in somatic cells and acts when blastomeres are still dividing and differentiating. The two NuRD complexes may not be important for the early development, but may act later during postembryonic development. Altogether, our data suggest a considerable complexity in the composition, the developmental function and the tissue-specificity of the different C. elegans Mi-2 complexes.


Assuntos
Adenosina Trifosfatases/fisiologia , Autoantígenos/fisiologia , Caenorhabditis elegans/embriologia , Proteínas de Drosophila/fisiologia , Animais , Caenorhabditis elegans/genética , Células Germinativas , Proteínas de Fluorescência Verde/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa