Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(28): e202303887, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38478740

RESUMO

Novel fluorinated foldamers based on aminomethyl-1,4-triazolyl-difluoroacetic acid (1,4-Tz-CF2) units were synthesized and their conformational behaviour was studied by NMR and molecular dynamics. Their activity on the aggregation of the human islet amyloid polypeptide (hIAPP) amyloid protein was evaluated by fluorescence spectroscopy and mass spectrometry. The fluorine labelling of these foldamers allowed the analysis of their interaction with the target protein. We demonstrated that the preferred extended conformation of homotriazolamers of 1,4-Tz-CF2 unit increases the aggregation of hIAPP, while the hairpin-like conformation of more flexible heterotriazolamers containing two 1,4-Tz-CF2 units mixed with natural amino acids from the hIAPP sequence reduces it, and more efficiently than the parent natural peptide. The longer heterotriazolamers having three 1,4-Tz-CF2 units adopting more folded hairpin-like and ladder-like structures similar to short multi-stranded ß-sheets have no effect. This work demonstrates that a good balance between the structuring and flexibility of these foldamers is necessary to allow efficient interaction with the target protein.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas , Triazóis , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Humanos , Triazóis/química , Simulação de Dinâmica Molecular , Halogenação , Agregados Proteicos
2.
Chembiochem ; 21(8): 1129-1135, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-31702868

RESUMO

Misfolding and aggregation of amyloid ß1-42 peptide (Aß1-42) play a central role in the pathogenesis of Alzheimer's disease (AD). Targeting the highly cytotoxic oligomeric species formed during the early stages of the aggregation process represents a promising therapeutic strategy to reduce the toxicity associated with Aß1-42. Currently, the thioflavin T (ThT) assay is the only established spectrofluorometric method to screen aggregation inhibitors. The success of the ThT assay is that it can detect Aß1-42 aggregates with high ß-sheet content, such as protofibrils or fibrils, which appear in the late aggregation steps. Unfortunately, by using the ThT assay, the detection of inhibitors of early soluble oligomers that present a low ß-sheet character is challenging. Herein, a new, facile, and robust boron-dipyrromethene (BODIPY) real-time assay suitable for 96-well plate format, which allows screening of compounds as selective inhibitors of the formation of Aß1-42 oligomers, is reported. These inhibitors decrease the cellular toxicity of Aß1-42, although they fail in the ThT assay. The findings have been confirmed and validated by structural analysis and cell viability assays under comparable experimental conditions. It is demonstrated that the BODIPY assay is a convenient method to screen and discover new candidate compounds that slow down or stop the pathological early oligomerization process and are active in the cellular assay. Therefore, it is a suitable complementary screening method of the current ThT assay.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Compostos de Boro/metabolismo , Monitoramento de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Humanos
3.
Chemistry ; 26(64): 14612-14622, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-32542806

RESUMO

Type 2 diabetes (T2D) and Alzheimer's disease (AD) belong to the 10 deadliest diseases and are sorely lacking in effective treatments. Both pathologies are part of the degenerative disorders named amyloidoses, which involve the misfolding and the aggregation of amyloid peptides, hIAPP for T2D and Aß1-42 for AD. While hIAPP and Aß1-42 inhibitors have been essentially designed to target ß-sheet-rich structures composing the toxic amyloid oligomers and fibrils of these peptides, the strategy aiming at trapping the non-toxic monomers in their helical native conformation has been rarely explored. We report herein the first example of helical foldamers as dual inhibitors of hIAPP and Aß1-42 aggregation and able to preserve the monomeric species of both amyloid peptides. A foldamer composed of 4-amino(methyl)-1,3-thiazole-5-carboxylic acid (ATC) units, adopting a 9-helix structure reminiscent of 310 helix, was remarkable as demonstrated by biophysical assays combining thioflavin-T fluorescence, transmission electronic microscopy, capillary electrophoresis and mass spectrometry.


Assuntos
Diabetes Mellitus Tipo 2 , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Peptídeos beta-Amiloides/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Conformação Proteica em Folha beta
4.
Anal Bioanal Chem ; 412(13): 3103-3111, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32211924

RESUMO

Type 2 diabetes is characterized by the aggregation of human islet amyloid polypeptide (hIAPP), from monomer to amyloid deposits that are made of insoluble fibrils. Discrepancies concerning the nature of formed species or oligomerization kinetics among reported in vitro studies on hIAPP aggregation process have been highlighted. In this work, we investigated if the sample itself could be at the origin of those observed differences. To this aim, four hIAPP samples obtained from three different sources or suppliers have been analyzed and compared by ThT fluorescence spectroscopy and by two recently developed techniques, capillary electrophoresis (CE), and ESI-IMS-QToF-MS. Lots provided by the same supplier were shown to be very similar whatever the analytical technique used to characterize them. In contrast, several critical differences could be pointed out for hIAPP provided by different suppliers. We demonstrated that in several samples, some oligomerized peptides (e.g., dimer) were already present upon reception. Purity was also different, and the proneness of the peptide solution to form fibrils in vitro within 24 h could vary considerably from one sample source to another but not from lot to lot of the same source. All those results demonstrate that the initial state of conformation, oligomerization, and quality of the hIAPP can greatly impact the aggregation kinetics, and thus the information provided by these in vitro tests. Finally, a careful selection of the peptide batch and source is mandatory to perform relevant in vitro studies on hIAPP oligomerization and to screen new molecules modulating this pathological process. Graphical abstract.


Assuntos
Biopolímeros/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Eletroforese Capilar/métodos , Humanos , Espectrometria de Massas por Ionização por Electrospray/métodos
5.
Beilstein J Org Chem ; 13: 2842-2853, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29564012

RESUMO

Pentapeptides having the sequence R-HN-Ala-Val-X-Val-Leu-OMe, where the central residue X is L-serine, L-threonine, (2S,3R)-L-CF3-threonine and (2S,3S)-L-CF3-threonine were prepared. The capacity of (2S,3S)- and (2S,3R)-CF3-threonine analogues to stabilize an extended structure when introduced in the central position of pentapeptides is demonstrated by NMR conformational studies and molecular dynamics simulations. CF3-threonine containing pentapeptides are more prone to mimic ß-strands than their natural Ser and Thr pentapeptide analogues. The proof of concept that these fluorinated ß-strand mimics are able to disrupt protein-protein interactions involving ß-sheet structures is provided. The CF3-threonine containing pentapeptides interact with the amyloid peptide Aß1-42 in order to reduce the protein-protein interactions mediating its aggregation process.

6.
Electrophoresis ; 35(23): 3302-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25219962

RESUMO

We report an improved CE method to monitor in vitro the self-assembly of monomeric amyloid ß-peptide (42 amino acids amyloid ß-peptide, Aß1-42 ) and in particular the crucial early steps involved in the formation of the neurotoxic oligomers. In order to start the kinetics from the beginning, sample preparation was optimized to provide samples containing exclusively the monomeric form. The CE method was also improved using a dynamic coating and by reducing the separation distance. Using this method, the disappearance of the monomer as well as the progressive formation of four species during the self-assembly process can now be monitored and quantified over time. The hydrodynamic radius of the species present at the initial kinetics step was estimated around 1.8 nm by Taylor dispersion analysis while SDS-PAGE analyses showed the predominance of the monomer. These results confirmed that the Aß1-42 species present at this initial time was the monomer. Methylene blue, an anti-Alzheimer disease candidate, was then evaluated. In spite of an oligomerization inhibition, the enhanced disappearance of the Aß1-42 monomer provoked by methylene blue was demonstrated for the first time. This method, allowing the monomeric and smallest oligomeric species to be monitored, represents a new accurate and precise way to evaluate compounds for drug discovery.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Descoberta de Drogas/métodos , Eletroforese Capilar/métodos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer , Amiloide/química , Amiloide/metabolismo , Humanos , Cinética , Azul de Metileno
7.
J Med Chem ; 66(17): 12005-12017, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37632446

RESUMO

A novel class of peptidomimetic foldamers based on diaza-peptide units are reported. Circular dichroism, attenuated total reflection -Fourier transform infrared, NMR, and molecular dynamics studies demonstrate that unlike the natural parent nonapeptide, the specific incorporation of one diaza-peptide unit at the N-terminus allows helical folding in water, which is further reinforced by the introduction of a second unit at the C-terminus. The ability of these foldamers to resist proteolysis, to mimic the small helical hot spot of transthyretin-amyloid ß (Aß) cross-interaction, and to decrease pathological Aß aggregation demonstrates that the introduction of diaza-peptide units is a valid approach for designing mimics or inhibitors of protein-protein interaction and other therapeutic peptidomimetics. This study also reveals that small peptide foldamers can play the same role as physiological chaperone proteins and opens a new way to design inhibitors of amyloid protein aggregation, a hallmark of more than 20 serious human diseases such as Alzheimer's disease.


Assuntos
Doença de Alzheimer , Dermatite , Peptidomiméticos , Humanos , Peptídeos beta-Amiloides , Chaperonas Moleculares , Proteínas Amiloidogênicas , Dicroísmo Circular , Peptidomiméticos/farmacologia
8.
Pharmaceutics ; 15(10)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37896129

RESUMO

A series of new hybrid derivatives 1a-c, 2a-c, 3a-c, 4a-c, 5a-c, inspired by nature, were synthesized and studied as multifunctional agents for the treatment of Alzheimer's disease (AD). These compounds were designed to merge together the trifluoromethyl benzyloxyaminic bioactive moiety, previously identified, with different acids available in nature. The ability of the synthesized compounds to chelate biometals, such as Cu2+, Zn2+ and Fe2+, was studied by UV-Vis spectrometer, and through a preliminary screening their antioxidant activity was evaluated by DPPH. Then, selected compounds were tested by in vitro ABTS free radical method and ex vivo rat brain TBARS assay. Compounds 2a-c, combining the strongest antioxidant and biometal chelators activities, were studied for their ability to contrast Aß1-40 fibrillization process. Finally, starting from the promising profile obtained for compound 2a, we evaluated if it could be able to induce a positive cross-interaction between transthyretin (TTR) and Aß in presence and in absence of Cu2+.

9.
Front Cell Dev Biol ; 9: 729001, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604227

RESUMO

Amyloid diseases are degenerative pathologies, highly prevalent today because they are closely related to aging, that have in common the erroneous folding of intrinsically disordered proteins (IDPs) which aggregate and lead to cell death. Type 2 Diabetes involves a peptide called human islet amyloid polypeptide (hIAPP), which undergoes a conformational change, triggering the aggregation process leading to amyloid aggregates and fibers rich in ß-sheets mainly found in the pancreas of all diabetic patients. Inhibiting the aggregation of amyloid proteins has emerged as a relevant therapeutic approach and we have recently developed the design of acyclic flexible hairpins based on peptidic recognition sequences of the amyloid ß peptide (Aß1-42) as a successful strategy to inhibit its aggregation involved in Alzheimer's disease. The present work reports the extension of our strategy to hIAPP aggregation inhibitors. The design, synthesis, conformational analyses, and biophysical evaluations of dynamic ß-hairpin like structures built on a piperidine-pyrrolidine ß-turn inducer are described. By linking to this ß-turn inducer three different arms (i) pentapeptide, (ii) tripeptide, and (iii) α/aza/aza/pseudotripeptide, we demonstrate that the careful selection of the peptide-based arms from the sequence of hIAPP allowed to selectively modulate its aggregation, while the peptide character can be decreased. Biophysical assays combining, Thioflavin-T fluorescence, transmission electronic microscopy, capillary electrophoresis, and mass spectrometry showed that the designed compounds inhibit both the oligomerization and the fibrillization of hIAPP. They are also capable to decrease the aggregation process in the presence of membrane models and to strongly delay the membrane-leakage induced by hIAPP. More generally, this work provides the proof of concept that our rational design is a versatile and relevant strategy for developing efficient and selective inhibitors of aggregation of amyloidogenic proteins.

10.
Chempluschem ; 86(6): 840-851, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33905181

RESUMO

In peptidotriazolamers every second peptide bond is replaced by a 1H-1,2,3-triazole. Such foldamers are expected to bridge the gap in molecular weight between small-molecule drugs and protein-based drugs. Amyloid ß (Aß) aggregates play an important role in Alzheimer's disease. We studied the impact of amide bond replacements by 1,4-disubstituted 1H-1,2,3-triazoles on the inhibitory activity of the aggregation "hot spots" K16 LVFF20 and G39 VVIA42 in Aß(1-42). We found that peptidotriazolamers act as modulators of the Aß(1-42) oligomerization. Some peptidotriazolamers are able to interfere with the formation of toxic early Aß oligomers, depending on the position of the triazoles, which is also supported by computational studies. Preliminary in vitro results demonstrate that a highly active peptidotriazolamer is also able to cross the blood-brain-barrier.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Barreira Hematoencefálica/metabolismo , Fragmentos de Peptídeos/química , Peptídeos/química , Agregados Proteicos/efeitos dos fármacos , Triazóis/química , Amidas/metabolismo , Peptídeos beta-Amiloides/metabolismo , Sobrevivência Celular , Humanos , Modelos Biológicos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Relação Estrutura-Atividade , Triazóis/metabolismo
11.
Bioorg Med Chem Lett ; 19(5): 1318-22, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19211248

RESUMO

A series of novel combretastatin A4 analogues, in which the cis-olefinic bridge is replaced by a cyclopropyl-vinyl or a cyclopropyl-amide moiety, were synthesized and evaluated for inhibition of tubulin polymerization and antiproliferative activity. The derivative 9a with a (cis,E)-cyclopropyl-vinyl unit is the most promising compound. As expected, molecular docking of 9a has shown that only one of the cis-cyclopropyl enantiomers is a good ligand for tubulin.


Assuntos
Amidas/síntese química , Ciclopropanos/síntese química , Estilbenos/síntese química , Compostos de Vinila/síntese química , Amidas/farmacologia , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclopropanos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Ligação Proteica/efeitos dos fármacos , Estilbenos/farmacologia , Tubulina (Proteína)/metabolismo , Compostos de Vinila/farmacologia
12.
Curr Opin Chem Biol ; 52: 157-167, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31590141

RESUMO

Protein-protein interactions involving ß-sheet secondary structures have been questioned in many fatal human diseases such as cancer, autoimmune and neurodegenerative diseases. Small selective peptide derivatives and analogues are promising drug candidates for inhibiting this poorly known class of PPIs. In this review, we will highlight the main strategies developed for designing linear and cyclic peptide and peptidomimetic inhibitors of PPIs involving ß-sheet structures. These compounds either do not adopt preferred conformations or can mimic protein secondary structures such as ß-strands, ß-hairpins or α-helices.


Assuntos
Peptídeos/farmacologia , Peptidomiméticos/farmacologia , Conformação Proteica em Folha beta , Anticorpos/química , Humanos , Compostos Macrocíclicos/química , Pinças Ópticas , Peptídeos/química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Peptidomiméticos/química , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas/química
13.
J Chromatogr A ; 1578: 83-90, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30327182

RESUMO

Type 2 diabetes is characterized by the aggregation of human Islet Amyloid Polypeptide (hIAPP) from monomer to large and insoluble fibrils. According to several recent studies, small soluble oligomers are now considered as potential toxic species. No monitoring tool has been to date reported to mimic in vitro the oligomerization process of hIAPP over time, although this would allow selecting candidate compounds that slow down or stop this pathological process. Considering the poor stability of those species and the necessity to monitor in real time, a compatible with the monitoring of hIAPP oligomerization CE method coupled to UV detection was developed. Three groups of hIAPP oligomers/monomers formed during this process could be separated. A polybrene coating was used to avoid adsorption of hIAPP onto capillary walls. Peaks identification was performed using a combination of CE-MS, filtrations and SDS-PAGE. They revealed that one peak is composed of monomer with a very small amount of dimer and trimer, whereas the two others are composed of bigger species higher than 100 kDa. We demonstrated that this real time oligomerization process started from the very initial step, with hIAPP principally as a monomer, until the formation of very big oligomers. This method was shown to be repeatable with RSDs on electrophoretic mobilities and relative peak areas less than 1.6 and 5.8% respectively for the monomer peak. Its application to study the anti-aggregation properties of resveratrol showed that this compound saved more than 30% of the monomeric hIAPP form whereas it almost disappeared without. The method opens new perspectives for the screening of potential drugs for type 2 diabetes.


Assuntos
Técnicas de Química Analítica/métodos , Diabetes Mellitus Tipo 2/fisiopatologia , Eletroforese Capilar , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química
14.
ACS Chem Neurosci ; 9(11): 2859-2869, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30025208

RESUMO

We recently reported that a glycopeptidomimetic molecule significantly delays the fibrillization process of Aß42 peptide involved in Alzheimer's disease. However, the binding mode of this compound, named 3ß, was not determined at the atomic scale, hindering our understanding of its mechanism of action and impeding structure-based design of new inhibitors. In the present study, we performed molecular docking calculations and molecular dynamics simulations to investigate the most probable structures of 3ß complexed with Aß protofibrils. Our results show that 3ß preferentially binds to an area of the protofibril surface that coincides with the protofibril dimerization interface observed in the solid-state NMR structure 5KK3 from the PDB. Based on these observations, we propose a model of the inhibition mechanism of Aß fibrillization by compound 3ß.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Glicopeptídeos/química , Fragmentos de Peptídeos/metabolismo , Peptidomiméticos/química , Amiloide/efeitos dos fármacos , Peptídeos beta-Amiloides/química , Glicopeptídeos/farmacologia , Humanos , Imageamento por Ressonância Magnética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/química , Peptidomiméticos/farmacologia , Ligação Proteica
15.
Eur J Med Chem ; 154: 280-293, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29807333

RESUMO

Aggregation of amyloid proteins is currently involved in more than 20 serious human diseases that are actually untreated, such as Alzheimer's disease (AD). Despite many efforts made to target the amyloid cascade in AD, finding an aggregation inhibiting compound and especially modulating early oligomerization remains a relevant and challenging strategy. We report herein the first examples of small and non-peptide mimics of acyclic beta-hairpins, showing an ability to delay the fibrillization of amyloid-ß (Aß1-42) peptide and deeply modify its early oligomerization process. Modifications providing better druggability properties such as increased hydrophilicity and reduced peptidic character were performed. We also demonstrate that an appropriate balance between flexibility and stability of the ß-hairpin must be reached to adapt to the different shape of the various aggregated forms of the amyloid peptide. This strategy can be investigated to target other challenging amyloid proteins.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Piperidinas/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Peptídeos beta-Amiloides/metabolismo , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/química , Agregados Proteicos/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
16.
Talanta ; 165: 84-91, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28153323

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder linked to protein aggregation, like more than twenty other human pathologies. One major protein incriminated in AD is the 42-residue amyloid-ß peptide (Aß1-42) which aggregates to form neurotoxic oligomers and fibrils. While, low molecular weight oligomers have been evidenced as neurotoxic species, only scarce methods raise the challenge to monitor the beginning of the aggregation process, called oligomerization. We propose here an innovative and fast monitoring of the time-dependent Aß1-42 oligomerization pattern by electrospray differential mobility analysis (ES-DMA). We developed a non-denaturing method based on ES-DMA to afford a real-time and direct characterization of the early, metastable and neurotoxic species. This technique provided their size distribution over time. At the beginning of the in vitro oligomerization process of Aß1-42, the size distribution is characterized by two populations with modal diameters around 3.5 and 4nm, corresponding to Monomer and Small oligomers. After few hours, larger species around 10nm are observed. The results were correlated to those obtained by capillary electrophoresis. We also demonstrated the ability of our method to evaluate Aß1-42 kinetics modulators. Thereby, ES-DMA provides new insights on Aß1-42 oligomerization in the presence of sugar-based peptidomimetic analogs which were recently described as modulators of Aß1-42 self-assembly and neurotoxicity inhibitors.


Assuntos
Peptídeos beta-Amiloides/análise , Peptídeos beta-Amiloides/química , Monitoramento de Medicamentos/métodos , Eletroforese Capilar/métodos , Espectrometria de Mobilidade Iônica/métodos , Doença de Alzheimer , Humanos , Técnicas In Vitro , Cinética
17.
J Med Chem ; 59(5): 2025-40, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26789783

RESUMO

How anti-Alzheimer's drug candidates that reduce amyloid 1-42 peptide fibrillization interact with the most neurotoxic species is far from being understood. We report herein the capacity of sugar-based peptidomimetics to inhibit both Aß1-42 early oligomerization and fibrillization. A wide range of bio- and physicochemical techniques, such as a new capillary electrophoresis method, nuclear magnetic resonance, and surface plasmon resonance, were used to identify how these new molecules can delay the aggregation of Aß1-42. We demonstrate that these molecules interact with soluble oligomers in order to maintain the presence of nontoxic monomers and to prevent fibrillization. These compounds totally suppress the toxicity of Aß1-42 toward SH-SY5Y neuroblastoma cells, even at substoichiometric concentrations. Furthermore, demonstration that the best molecule combines hydrophobic moieties, hydrogen bond donors and acceptors, ammonium groups, and a hydrophilic ß-sheet breaker element provides valuable insight for the future structure-based design of inhibitors of Aß1-42 aggregation.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Desenho de Fármacos , Glicopeptídeos/farmacologia , Neuroblastoma/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptidomiméticos , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glicopeptídeos/síntese química , Glicopeptídeos/química , Humanos , Estrutura Molecular , Neuroblastoma/patologia , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica/efeitos dos fármacos , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
18.
Eur J Med Chem ; 86: 752-8, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25238173

RESUMO

Alzheimer's disease is a neurodegenerative disorder linked to oligomerization and fibrillization of amyloid ß peptides. Aß1-42 being the most aggregative and neurotoxic amyloid peptide, we report herein the capacity of sugar-based pentapeptide analogs to modulate the Aß1-42 aggregation process using thioflavin fluorescence and transmission electron microscopy assays. The importance of the free hydroxyl groups of the sugar moiety, used as a ß-breaker element, is confirmed since hydroxylated compounds inhibit the aggregation process while benzylated ones enhance it. Furthermore, the most effective molecules were also evaluated by a recently developed capillary electrophoresis method, providing in vitro monitoring of the crucial, very early stages of the self-assembly process. This technique allowed us to investigate the effect of these compounds on the small non-fibrillar Aß1-42 oligomers suspected by several groups worldwide as highly neurotoxic. We clearly demonstrated that molecules delaying the aggregation can stabilize the monomeric peptide or promote the formation of soluble oligomeric species. In contrast, molecules that accelerate the aggregation can prevent the presence of small toxic oligomers.


Assuntos
Peptídeos beta-Amiloides/química , Carboidratos/química , Oligopeptídeos/química , Fragmentos de Peptídeos/química , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Peptídeos beta-Amiloides/efeitos dos fármacos , Oligopeptídeos/efeitos dos fármacos , Fragmentos de Peptídeos/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Relação Estrutura-Atividade
19.
Curr Pharm Des ; 19(22): 4115-30, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23181573

RESUMO

Regulator of a vast array of vital cellular processes including cell-cycle progression, apoptosis and antigen presentation, the proteasome represents a major therapeutic target. Therefore, selective inhibitors of the proteasome are promising candidates to develop new treatments for diseases like inflammation, immune diseases and cancer. For proof, the boronic acid, Bortezomib has been approved for treating incurable multiple myeloma in 2003 and mantle lymphoma in 2006 and five others proteasome inhibitors are currently in clinical trials for treatment of different cancers. These compounds and many described proteasome inhibitors interact covalently with the active site of the enzyme through an electrophilic reactive function. Non-covalent inhibitors, mainly peptides, pseudopeptides and some organic compounds, have been less widely investigated. Devoid of reactive function prone to nucleophilic attack, they could offer the advantage of an improved selectivity, a less excessive reactivity and instability which are often associated with side effects in therapeutics. This review highlights the current state of research in the field of non-covalent proteasome inhibitors.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Fragmentos de Peptídeos/uso terapêutico , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/uso terapêutico , Animais , Humanos
20.
Neoplasia ; 8(7): 587-95, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16867221

RESUMO

Combretastatin A4 phosphate (CA4P) causes rapid disruption of the tumor vasculature and is currently being evaluated for antivascular therapy. We describe the initial results obtained with a noninvasive multiparametric magnetic resonance imaging (MRI) approach to assess the early effects of CA4P on rat bladder tumors implanted on nude mice. MRI (4.7 T) comprised a fast spin-echo sequence for growth curve assessment; a multislice multiecho sequence for T2 measurement before, 15 minutes after, and 24 hours after CA4P (100 mg/kg); and a fast T2w* gradient-echo sequence to assess MR signal modification under carbogen breathing before, 35 minutes after, and 24 hours after CA4P. The tumor fraction with increased T2w* signal intensity under carbogen (T+) was used to quantify CA4P effect on functional vasculature. CA4P slowed tumor growth over 24 hours and accelerated necrosis development. T+ decrease was observed already at 35 minutes post-CA4P. Early T2 increase was observed in regions becoming necrotic at 24 hours post-CA4P, as confirmed by high T2 and histology. These regions exhibited, under carbogen, a switch from T2w* signal increase before CA4P to a decrease postCA4P. The combination of carbogen-based functional MRI and T2 measurement may be useful for the early follow-up of antivascular therapy without the administration of contrast agents.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Dióxido de Carbono/farmacologia , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Oxigênio/farmacologia , Radiossensibilizantes/farmacologia , Estilbenos/farmacologia , Neoplasias da Bexiga Urinária/patologia , Animais , Meios de Contraste/farmacologia , Camundongos , Camundongos Nus , Transplante de Neoplasias , Neovascularização Patológica , Ratos , Fatores de Tempo , Neoplasias da Bexiga Urinária/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa