Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nano Lett ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917338

RESUMO

Herein, we introduce a photobiocidal surface activated by white light. The photobiocidal surface was produced through thermocompressing a mixture of titanium dioxide (TiO2), ultra-high-molecular-weight polyethylene (UHMWPE), and reduced graphene oxide (rGO) powders. A photobiocidal activity was not observed on UHMWPE-TiO2. However, UHMWPE-TiO2@rGO exhibited potent photobiocidal activity (>3-log reduction) against Staphylococcus epidermidis and Escherichia coli bacteria after a 12 h exposure to white light. The activity was even more potent against the phage phi 6 virus, a SARS-CoV-2 surrogate, with a >5-log reduction after 6 h exposure to white light. Our mechanistic studies showed that the UHMWPE-TiO2@rGO was activated only by UV light, which accounts for 0.31% of the light emitted by the white LED lamp, producing reactive oxygen species that are lethal to microbes. This indicates that adding rGO to UHMWPE-TiO2 triggered intense photobiocidal activity even at shallow UV flux levels.

2.
J Am Chem Soc ; 145(32): 17700-17709, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37527512

RESUMO

In photoelectrochemical cells (PECs) the photon-to-current conversion efficiency is often governed by carrier transport. Most metal oxides used in PECs exhibit thermally activated transport due to charge localization via the formation of polarons or the interaction with defects. This impacts catalysis by restricting the charge accumulation and extraction. To overcome this transport bottleneck nanostructuring, selective doping and photothermal treatments have been employed. Here we demonstrate an alternative approach capable of directly activating localized carriers in bismuth vanadate (BiVO4). We show that IR photons can optically excite localized charges, modulate their kinetics, and enhance the PEC current. Moreover, we track carriers bound to oxygen vacancies and expose their ∼10 ns charge localization, followed by ∼60 µs transport-assisted trapping. Critically, we demonstrate that localization is strongly dependent on the electric field within the device. While optical modulation has still a limited impact on overall PEC performance, we argue it offers a path to control devices on demand and uncover defect-related photophysics.

3.
Nat Mater ; 20(4): 511-517, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33432143

RESUMO

Recently, high solar-to-hydrogen efficiencies were demonstrated using La and Rh co-doped SrTiO3 (La,Rh:SrTiO3) incorporated into a low-cost and scalable Z-scheme device, known as a photocatalyst sheet. However, the unique properties that enable La,Rh:SrTiO3 to support this impressive performance are not fully understood. Combining in situ spectroelectrochemical measurements with density functional theory and photoelectron spectroscopy produces a depletion model of Rh:SrTiO3 and La,Rh:SrTiO3 photocatalyst sheets. This reveals remarkable properties, such as deep flatband potentials (+2 V versus the reversible hydrogen electrode) and a Rh oxidation state dependent reorganization of the electronic structure, involving the loss of a vacant Rh 4d mid-gap state. This reorganization enables Rh:SrTiO3 to be reduced by co-doping without compromising the p-type character. In situ time-resolved spectroscopies show that the electronic structure reorganization induced by Rh reduction controls the electron lifetime in photocatalyst sheets. In Rh:SrTiO3, enhanced lifetimes can only be obtained at negative applied potentials, where the complete Z-scheme operates inefficiently. La co-doping fixes Rh in the 3+ state, which results in long-lived photogenerated electrons even at very positive potentials (+1 V versus the reversible hydrogen electrode), in which both components of the complete device operate effectively. This understanding of the role of co-dopants provides a new insight into the design principles for water-splitting devices based on bandgap-engineered metal oxides.

4.
Chemistry ; 28(16): e202104181, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35114042

RESUMO

Composite photocatalyst-adsorbents such as TiO2 /Fe2 O3 are promising materials for the one-step treatment of arsenite contaminated water. However, no previous study has investigated how coupling TiO2 with Fe2 O3 influences the photocatalytic oxidation of arsenic(III). Herein, we develop new hybrid experiment/modelling approaches to study light absorption, charge carrier behaviour and changes in the rate law of the TiO2 /Fe2 O3 system, using UV-Vis spectroscopy, transient absorption spectroscopy (TAS), and kinetic analysis. Whilst coupling TiO2 with Fe2 O3 improves total arsenic removal by adsorption, oxidation rates significantly decrease (up to a factor of 60), primarily due to the parasitic absorption of light by Fe2 O3 (88 % of photons at 368 nm) and secondly due to changes in the rate law from disguised zero-order kinetics to first-order kinetics. Charge transfer across this TiO2 -Fe2 O3 heterojunction is not observed. Our study demonstrates the first application of a multi-adsorbate surface complexation model (SCM) towards describing As(III) oxidation kinetics which, unlike Langmuir-Hinshelwood kinetics, includes the competitive adsorption of As(V). We further highlight the importance of parasitic light absorption and catalyst fouling when designing heterogeneous photocatalysts for As(III) remediation.

5.
Phys Chem Chem Phys ; 23(2): 1285-1291, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33367408

RESUMO

WO3 photoanodes offer rare stability in acidic media, but are limited by their selectivity for oxygen evolution over parasitic side reactions, when employed in photoelectrochemical (PEC) water splitting. Herein, this is remedied via the modification of nanostructured WO3 photoanodes with surface decorated PdO as an oxygen evolution co-catalyst (OEC). The photoanodes and co-catalyst particles are grown using an up-scalable aerosol assisted chemical vapour deposition (AA-CVD) route, and their physical properties characterised by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and UV-vis absorption spectroscopy. Subsequent PEC and transient photocurrent (TPC) measurements showed that the use of a PdO co-catalyst dramatically increases the faradaic efficiency (FE) of water oxidation from 52% to 92%, whilst simultaneously enhancing the photocurrent generation and charge extraction rate. The Pd oxidation state was found to be critical in achieving these notable improvements to the photoanode performance, which is primarily attributed to the higher selectivity towards oxygen evolution when PdO is used as an OEC and the formation of a favourable junction between WO3 and PdO, that drives band bending and charge separation.

6.
Molecules ; 25(23)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256209

RESUMO

The need for clean and efficient energy storage has become the center of attention due to the eminent global energy crisis and growing ecological concerns. A key component in this effort is the ultra-high performance battery, which will play a major role in the energy industry. To meet the demands in portable electronic devices, electric vehicles, and large-scale energy storage systems, it is necessary to prepare advanced batteries with high safety, fast charge ratios, and discharge capabilities at a low cost. Cathode materials play a significant role in determining the performance of batteries. Among the possible electrode materials is vanadium pentoxide, which will be discussed in this review, due to its low cost and high theoretical capacity. Additionally, aqueous electrolytes, which are environmentally safe, provide an alternative approach compared to organic media for safe, cost-effective, and scalable energy storage. In this review, we will reveal the industrial potential of competitive methods to grow cathodes with excellent stability and enhanced electrochemical performance in aqueous media and lay the foundation for the large-scale production of electrode materials.


Assuntos
Fontes de Energia Elétrica , Eletroquímica , Eletrodos , Eletrólitos/química , Substâncias Intercalantes/química , Eletricidade
7.
J Am Chem Soc ; 141(47): 18791-18798, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31663329

RESUMO

Oxygen vacancies are ubiquitous in metal oxides and critical to performance, yet the impact of these states upon charge carrier dynamics important for photoelectrochemical and photocatalytic applications remains contentious and poorly understood. A key challenge is the unambiguous identification of spectroscopic fingerprints which can be used to track their function. Herein, we employ five complementary techniques to modulate the electronic occupancy of states associated with oxygen vacancies in situ in BiVO4 photoanodes, allowing us to identify a spectral signature for the ionization of these states. We obtain an activation energy of ∼0.2 eV for this ionization process, with thermally activated electron detrapping from these states determining the kinetics of electron extraction, consistent with improved photoelectrochemical performance at higher temperatures. Bulk, un-ionized states, however, function as deep hole traps, with such trapped holes energetically unable to drive water oxidation. These observations help address recent controversies in the literature regarding oxygen vacancy function, providing new insights into their impact upon photoelectrochemical performance.

8.
Small ; 15(11): e1805473, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30716205

RESUMO

CO2 photoreduction to C1 /C1+ energized molecules is a key reaction of solar fuel technologies. Building heterojunctions can enhance photocatalysts performance, by facilitating charge transfer between two heterojunction phases. The material parameters that control this charge transfer remain unclear. Here, it is hypothesized that governing factors for CO2 photoreduction in gas phase are: i) a large porosity to accumulate CO2 molecules close to catalytic sites and ii) a high number of "points of contact" between the heterojunction components to enhance charge transfer. The former requirement can be met by using porous materials; the latter requirement by controlling the morphology of the heterojunction components. Hence, composites of titanium oxide or titanate and metal-organic framework (MOF), a highly porous material, are built. TiO2 or titanate nanofibers are synthesized and MOF particles are grown on the fibers. All composites produce CO under UV-vis light, using H2 as reducing agent. They are more active than their component materials, e.g., ≈9 times more active than titanate. The controlled composites morphology is confirmed and transient absorption spectroscopy highlights charge transfer between the composite components. It is demonstrated that electrons transfer from TiO2 into the MOF, and holes from the MOF into TiO2 , as the MOF induces band bending in TiO2 .

9.
Chemistry ; 25(48): 11337-11345, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31241218

RESUMO

Type I heterojunction films of α-Fe2 O3 /ZnO are reported here as a non-titania based photocatalyst, which shows remarkable enhancement in the photocatalytic properties towards stearic acid degradation under UVA-light exposure (λ=365 nm), with a quantum efficiency of ξ=4.42±1.54×10-4 molecules degraded/photon, which was about 16 times greater than that of α-Fe2 O3 , and 2.5 times greater than that of ZnO. Considering that the degradation of stearic acid requires 104 electron transfers for each molecule, this represents an overall quantum efficiency of 4.60 % for the α-Fe2 O3 /ZnO heterojunction. Time-resolved transient absorption spectroscopy (TAS) revealed the charge-carrier behaviour responsible for this increase in activity. Photogenerated electrons, formed in the ZnO layer, were transferred into the α-Fe2 O3 layer on the pre-µs timescale, which reduced electron-hole recombination. This increased the lifetime of photogenerated holes formed in ZnO, which oxidise stearic acid. The heterojunction α-Fe2 O3 /ZnO films grown herein show potential environmental applications as coatings for self-cleaning windows and surfaces.

10.
J Am Chem Soc ; 140(47): 16168-16177, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30383367

RESUMO

A thorough understanding of the kinetic competition between desired water oxidation/electron extraction processes and any detrimental surface recombination is required to achieve high water oxidation efficiencies in transition-metal oxide systems. The kinetics of these processes in high Faradaic efficiency tungsten trioxide (WO3) photoanodes (>85%) are monitored herein by transient diffuse reflectance spectroscopy and correlated with transient photocurrent data for electron extraction. Under anodic bias, efficient hole transfer to the aqueous electrolyte is observed within a millisecond. In contrast, electron extraction is found to be comparatively slow (∼10 ms), increasing in duration with nanoneedle length. The relative rates of these water oxidation and electron extraction kinetics are shown to be reversed in comparison to other commonly examined metal oxides (e.g., TiO2, α-Fe2O3, and BiVO4). Studies conducted as a function of applied bias and film processing to modulate oxygen vacancy density indicate that slow electron extraction kinetics result from electron trapping in shallow WO3 trap states associated with oxygen vacancies. Despite these slow electron extraction kinetics, charge recombination losses on the microsecond to second time scales are observed to be modest compared to other oxides studied. We propose that the relative absence of such recombination losses, and the observation of a photocurrent onset potential close to flat-band, result directly from the faster water oxidation kinetics of WO3. We attribute these fast water oxidation kinetics to the highly oxidizing valence band position of WO3, thus highlighting the potential importance of thermodynamic driving force for catalysis in outcompeting detrimental surface recombination processes.

11.
J Am Chem Soc ; 139(33): 11537-11543, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28735533

RESUMO

The kinetics of photoelectrochemical (PEC) oxidation of methanol, as a model organic substrate, on α-Fe2O3 photoanodes are studied using photoinduced absorption spectroscopy and transient photocurrent measurements. Methanol is oxidized on α-Fe2O3 to formaldehyde with near unity Faradaic efficiency. A rate law analysis under quasi-steady-state conditions of PEC methanol oxidation indicates that rate of reaction is second order in the density of surface holes on hematite and independent of the applied potential. Analogous data on anatase TiO2 photoanodes indicate similar second-order kinetics for methanol oxidation with a second-order rate constant 2 orders of magnitude higher than that on α-Fe2O3. Kinetic isotope effect studies determine that the rate constant for methanol oxidation on α-Fe2O3 is retarded ∼20-fold by H/D substitution. Employing these data, we propose a mechanism for methanol oxidation under 1 sun irradiation on these metal oxide surfaces and discuss the implications for the efficient PEC methanol oxidation to formaldehyde and concomitant hydrogen evolution.

12.
J Phys Chem A ; 120(5): 715-23, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26777898

RESUMO

Anatase:rutile TiO2 junctions are often shown to be more photocatalytically active than anatase or rutile alone, but the underlying cause of this improvement is not fully understood. Herein, we employ transient absorption spectroscopy to study hole transfer across the anatase:rutile heterojunction in films as a function of phase composition. By exploiting the different signatures in the photoinduced absorption of trapped charges in anatase and rutile, we were able to separately track the yield and lifetime of holes in anatase and rutile sites within phase composites. Photogenerated holes transfer from rutile to anatase on submicrosecond time scales. This hole transfer can significantly increase the anatase hole yield, with a 20:80 anatase:rutile composite showing a 5-fold increase in anatase holes observed from the microsecond. Hole transfer does not result in an increase in charge-carrier lifetime, where an intermediate recombination dynamic between that of pure anatase (t1/2 ≈ 0.5 ms) and rutile (t1/2 ≈ 20 ms) is found in the anatase:rutile junction (t1/2 ≈ 4 ms). Irrespective of what the formal band energy alignment may be, we demonstrate the importance of trap-state energetics for determining the direction of photogenerated charge separation across heterojunctions and how transient absorption spectroscopy, a method that can specifically track the migration of trapped charges, is a useful tool for understanding this behavior.

13.
J Am Chem Soc ; 136(28): 9854-7, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-24950057

RESUMO

Transient absorption spectroscopy on subpicosecond to second time scales is used to investigate photogenerated charge carrier recombination in Si-doped nanostructured hematite (α-Fe2O3) photoanodes as a function of applied bias. For unbiased hematite, this recombination exhibits a 50% decay time of ~6 ps, ~10(3) times faster than that of TiO2 under comparable conditions. Anodic bias significantly retards hematite recombination dynamics, and causes the appearance of electron trapping on ps-µs time scales. These ultrafast recombination dynamics, their retardation by applied bias, and the associated electron trapping are discussed in terms of their implications for efficient water oxidation.

14.
Energy Environ Sci ; 17(5): 1677-1694, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38449570

RESUMO

Photovoltaic-coupled electrolysis (PV-E) and photoelectrochemical (PEC) water splitting are two options for storing solar energy as hydrogen. Understanding the requirements for achieving a positive energy balance over the lifetime of facilities using these technologies is important for ensuring sustainability. While neither technology has yet reached full commercialisation, they are also at very different technology readiness levels and scales of development. Here, we model the energy balance of standalone large-scale facilities to evaluate their energy return on energy invested (ERoEI) over time and energy payback time (EPBT). We find that for average input parameters based on present commercialised modules, a PV-E facility shows an EPBT of 6.2 years and ERoEI after 20 years of 2.1, which rises to approximately 3.7 with an EPBT of 2.7 years for favourable parameters using the best metrics amongst large-scale modules. The energy balance of PV-E facilities is influenced most strongly by the upfront embodied energy costs of the photovoltaic component. In contrast, the simulated ERoEI for a PEC facility made with earth abundant materials only peaks at 0.42 after 11 years and about 0.71 after 20 years for facilities with higher-performance active materials. Doubling the conversion efficiency to 10% and halving the degradation rate to 2% for a 10-year device lifetime can allow PEC facilities to achieve an ERoEI after 20 years of 2.1 for optimistic future parameters. We also estimate that recycling the materials used in hydrogen production technologies improves the energy balance by 28% and 14% for favourable-case PV-E and PEC water splitting facilities, respectively.

15.
Phys Chem Chem Phys ; 15(21): 8254-63, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23612846

RESUMO

Anatase TiO2 thin-films were formed on glass by a sol-gel dip-coating method and annealed at 500 °C. Ag nanoparticles were grown on the surface of TiO2 by a photo-assisted process from AgNO3 salt using either UVC - 254 nm or UVA - 365 nm light. The size, shape and coverage of the particles were assessed by scanning electron microscopy. Changes in surface plasmon properties were investigated by UV-visible spectroscopy. A greater level of spherical Ag nanoparticles grew on TiO2 when using UVA light (365 nm); with particles 96 ± 33 nm wide on average and covering 29% of the surface. In the case of UVC light (254 nm), particles were 78 ± 14 nm wide on average and covered 13% of the surface. EXAFS measurements performed in situ of the Ag K-edge showed that the photo-assisted growth was more rapid when UVA light was used, leading to the full conversion of the AgNO3 salt layer in ≈1900 seconds. When UVC light was used, ≈50% of the salt layer was converted in ≈6100 seconds. The inhibited growth under UVC conditions was attributed to the absorption of light by the Ag nanoparticles as they formed (as opposed to the semiconductor beneath). The films also displayed reversible photochromism. The change in phase from the coloured (metallic Ag) to the bleached state (oxidized Ag) was identified using EXAFS spectroscopy. By comparing the EXAFS pattern with simulated model structures, it was shown that the transition from cubic Ag to cubic Ag2O was most likely, with an ≈70% conversion with 12 hours of white light irradiance. We believe that this is the first time the bleached form of silver in photochromic Ag-TiO2 thin-films has been identified by a direct method. In addition, we believe that this is the first case in which the photo-assisted formation of Ag-TiO2 has been monitored in situ under ambient temperature and pressure.

16.
Chem Soc Rev ; 41(2): 738-81, 2012 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21938290

RESUMO

Combinatorial chemistry is now commonplace in the pharmaceutical industry and applied rigorously in the discovery of drugs. Within materials science, combinatorial methods have been widely applied in investigating thin-films and since its re-introduction in the mid 90's more than 20 new families of materials have been discovered. Yet, given the high diversity of states that can be produced in a single deposition, such methods are now being used more prominently to optimise functional properties of existing materials; having been applied in a variety of fields. In this review we will cover the key developments in bandgap, ferro/di-electric, fuel cell anode/ cathode, H(2) storage, hardness, Li battery electrodes, luminescence, transparent ferro-magnetic, photocatalytic, photovoltaic, shape-memory, transparent conducting oxide and thermo-electric materials optimisation. The critical review focuses on how functional-property relationships have been derived from combinatorial studies (217 references).

17.
Intensive Care Med Exp ; 11(1): 9, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36823262

RESUMO

BACKGROUND: Divergence between deterioration to life-threatening COVID-19 or clinical improvement occurs for most within the first 14 days of symptoms. Life-threatening COVID-19 shares clinical similarities with Macrophage Activation Syndrome, which can be driven by elevated Free Interleukin-18 (IL-18) due to failure of negative-feedback release of IL-18 binding protein (IL-18bp). We, therefore, designed a prospective, longitudinal cohort study to examine IL-18 negative-feedback control in relation to COVID-19 severity and mortality from symptom day 15 onwards. METHODS: 662 blood samples, matched to time from symptom onset, from 206 COVID-19 patients were analysed by enzyme-linked immunosorbent assay for IL-18 and IL-18bp, enabling calculation of free IL-18 (fIL-18) using the updated dissociation constant (Kd) of 0.05 nmol. Adjusted multivariate regression analysis was used to assess the relationship between highest fIL-18 and outcome measures of COVID-19 severity and mortality. Re-calculated fIL-18 values from a previously studied healthy cohort are also presented. RESULTS: Range of fIL-18 in COVID-19 cohort was 10.05-1157.7 pg/ml. Up to symptom day 14, mean fIL-18 levels increased in all patients. Levels in survivors declined thereafter, but remained elevated in non-survivors. Adjusted regression analysis from symptom day 15 onwards showed a 100 mmHg decrease in PaO2/FiO2 (primary outcome) for each 37.7 pg/ml increase in highest fIL-18 (p < 0.03). Per 50 pg/ml increase in highest fIL-18, adjusted logistic regression gave an odds-ratio (OR) for crude 60-day mortality of 1.41 (1.1-2.0) (p < 0.03), and an OR for death with hypoxaemic respiratory failure of 1.90 [1.3-3.1] (p < 0.01). Highest fIL-18 was associated also with organ failure in patients with hypoxaemic respiratory failure, with an increase of 63.67 pg/ml for every additional organ supported (p < 0.01). CONCLUSIONS: Elevated free IL-18 levels from symptom day 15 onwards are associated with COVID-19 severity and mortality. ISRCTN: #13450549; registration date: 30/12/2020.

18.
ACS Appl Mater Interfaces ; 15(5): 6817-6830, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36719032

RESUMO

In photocatalysis, especially in CO2 reduction and H2 production, the development of multicomponent nanomaterials provides great opportunities to tune many critical parameters toward increased activity. This work reports the development of tunable organic/inorganic heterojunctions comprised of cobalt oxides (Co3O4) of varying morphology and modified carbon nitride (CN), targeting on optimizing their response under UV-visible irradiation. MOF structures were used as precursors for the synthesis of Co3O4. A facile solvothermal approach allowed the development of ultrathin two-dimensional (2D) Co3O4 nanosheets (Co3O4-NS). The optimized CN and Co3O4 structures were coupled forming heterojunctions, and the content of each part was optimized. Activity was significantly improved in the nanocomposites bearing Co3O4-NS compared with the corresponding bulk Co3O4/CN composites. Transient absorption spectroscopy revealed a 100-fold increase in charge carrier lifetime on Co3O4-NS sites in the composite compared with the bare Co3O4-NS. The improved photocatalytic activity in H2 production and CO2 reduction is linked with (a) the larger interface imposed from the matching 2D structure of Co3O4-NS and the planar surface of CN, (b) improvements in charge carrier lifetime, and (c) the enhanced CO2 adsorption. The study highlights the importance of MOF structures used as precursors in forming advanced materials and the stepwise functionalization of the individual parts in nanocomposites for the development of materials with superior activity.

19.
Chemistry ; 18(41): 13048-58, 2012 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-22945797

RESUMO

It has often been suggested that anatase-rutile mixtures/composites synergistically enhance photocatalysis. However, in the case of dense thin-films containing an intimate mix of both anatase and rutile phases, such an effect has not been observed. In synthesising combinatorial films with graded film thickness and phase, and applying established photocatalytic mapping methods, we were able to assess how dense thin-films of intimately mixed anatase-rutile mixtures affect photocatalytic performance. We found that no photocatalytic synergy between anatase-rutile composites (29≤rutile %≤83) within such dense thin-film systems exists. In fact, an increased presence of rutile caused the photocatalytic activity to fall. This was explained by the unfavourable energetics in the multiple electron transfers required between several neighbouring rutile and anatase sites for the photo-generated electron to reach the material's surface; encouraging the trapping of electrons within the bulk and increasing the likelihood of charge recombination. The decrease in photocatalytic activity was found to vary linearly with rutile component.

20.
ACS Appl Mater Interfaces ; 14(17): 19342-19352, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35442614

RESUMO

Semiconductor/metal-organic framework (MOF) heterojunctions have demonstrated promising performance for the photoconversion of CO2 into value-added chemicals. To further improve performance, we must understand better the factors which govern charge transfer across the heterojunction interface. However, the effects of interfacial electric fields, which can drive or hinder electron flow, are not commonly investigated in MOF-based heterojunctions. In this study, we highlight the importance of interfacial band bending using two carbon nitride/MOF heterojunctions with either Co-ZIF-L or Ti-MIL-125-NH2. Direct measurement of the electronic structures using X-ray photoelectron spectroscopy (XPS), work function, valence band, and band gap measurements led to the construction of a simple band model at the heterojunction interface. This model, based on the heterojunction components and band bending, enabled us to rationalize the photocatalytic enhancements and losses observed in MOF-based heterojunctions. Using the insight gained from a promising band bending diagram, we developed a Type II carbon nitride/MOF heterojunction with a 2-fold enhanced CO2 photoreduction activity compared to the physical mixture.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa