Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Malar J ; 23(1): 228, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39090658

RESUMO

BACKGROUND: Biological control is a promising alternative or complementary approach for controlling vector populations in response to the spread of insecticide resistance in malaria vectors. This study evaluated the efficacy of three selected potential predators on the density and fitness parameters of Anopheles funestus larvae in rural Tanzania. METHODS: Common predator families Aeshnidae (dragonflies), Coenagrionidae (damselflies), and Notonectidae (backswimmers) and An. funestus group larvae were collected from natural aquatic habitats in rural south-eastern Tanzania. Predators were starved for 12-h while An. funestus larvae were given fish food before starting the experiment. Anopheles funestus larvae were placed into artificial habitats containing predators, exposing them to potential predation. The number of surviving An. funestus larvae were counted every 24-h. An emergence traps were placed at the top of artificial habitats to capture emerging mosquitoes. Emerged mosquitoes were monitored until they died. Female wings were measured and used as a proxy for body size. Generalized linear mixed models (GLMM) with binomial variates at 95% CI and Cox proportional hazard models were used to assess the proportion of dead mosquitoes and the daily survival determined. RESULTS: There were significant differences in the number of emerged mosquitoes between the treatment and control groups (P < 0.001). Thus, all predator species played a significant role in reducing the density of An. funestus mosquitoes (P < 0.001). Furthermore, these predators had notable effects on the fitness parameters and survival of emerged mosquitoes (P < 0.001). Among the three predators studied, Coenagrionidae (damselflies) were most efficient followed by Notonectidae (backswimmers), with Aeshnidae (dragonflies) being the least efficient. CONCLUSION: Selected aquatic predators have the potential to reduce the survival and density of An. funestus larvae. They might eventually be included within an integrated malaria vector control strategy, ultimately leading to a reduction in malaria transmission.


Assuntos
Anopheles , Larva , Controle de Mosquitos , Animais , Anopheles/fisiologia , Tanzânia , Controle de Mosquitos/métodos , Larva/fisiologia , Larva/crescimento & desenvolvimento , Feminino , Mosquitos Vetores/fisiologia , Odonatos/fisiologia , Comportamento Predatório , Controle Biológico de Vetores/métodos , População Rural , Malária/prevenção & controle , Malária/transmissão
2.
Malar J ; 18(1): 314, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31533739

RESUMO

BACKGROUND: Eave ribbons treated with spatial repellents effectively prevent human exposure to outdoor-biting and indoor-biting malaria mosquitoes, and could constitute a scalable and low-cost supplement to current interventions, such as insecticide-treated nets (ITNs). This study measured protection afforded by transfluthrin-treated eave ribbons to users (personal and communal protection) and non-users (only communal protection), and whether introducing mosquito traps as additional intervention influenced these benefits. METHODS: Five experimental huts were constructed inside a 110 m long, screened tunnel, in which 1000 Anopheles arabiensis were released nightly. Eave ribbons treated with 0.25 g/m2 transfluthrin were fitted to 0, 1, 2, 3, 4 or 5 huts, achieving 0, 20, 40, 60, 80 and 100% coverage, respectively. Volunteers sat near each hut and collected mosquitoes attempting to bite them from 6 to 10 p.m. (outdoor-biting), then went indoors to sleep under untreated bed nets, beside which CDC-light traps collected mosquitoes from 10 p.m. to 6 a.m. (indoor-biting). Caged mosquitoes kept inside the huts were monitored for 24 h-mortality. Separately, eave ribbons, UV-LED mosquito traps (Mosclean) or both the ribbons and traps were fitted, each time leaving the central hut unfitted to represent non-user households and assess communal protection. Biting risk was measured concurrently in all huts, before and after introducing interventions. RESULTS: Transfluthrin-treated eave ribbons provided 83% and 62% protection indoors and outdoors respectively to users, plus 57% and 48% protection indoors and outdoors to the non-user. Protection for users remained constant, but protection for non-users increased with eave ribbons coverage, peaking once 80% of huts were fitted. Mortality of mosquitoes caged inside huts with eave ribbons was 100%. The UV-LED traps increased indoor exposure to users and non-users, but marginally reduced outdoor-biting. Combining the traps and eave ribbons did not improve user protection relative to eave ribbons alone. CONCLUSION: Transfluthrin-treated eave ribbons protect both users and non-users against malaria mosquitoes indoors and outdoors. The mosquito-killing property of transfluthrin can magnify the communal benefits by limiting unwanted diversion to non-users, but should be validated in field trials against pyrethroid-resistant vectors. Benefits of the UV-LED traps as an intervention alone or alongside eave ribbons were however undetectable in this study. These findings extend the evidence that transfluthrin-treated eave ribbons could complement ITNs.


Assuntos
Anopheles , Ciclopropanos , Fluorbenzenos , Mordeduras e Picadas de Insetos/prevenção & controle , Repelentes de Insetos , Malária/prevenção & controle , Controle de Mosquitos , Mosquitos Vetores , Adulto , Animais , Humanos , Masculino , Controle de Mosquitos/métodos , Tanzânia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa