Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Cancer Sci ; 115(6): 1924-1935, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38549229

RESUMO

In childhood acute lymphoblastic leukemia (ALL), TP53 gene mutation is associated with chemoresistance in a certain population of relapsed cases. To directly verify the association of TP53 gene mutation with chemoresistance of relapsed childhood ALL cases and improve their prognosis, the development of appropriate human leukemia models having TP53 mutation in the intrinsic gene is required. Here, we sought to introduce R248Q hotspot mutation into the intrinsic TP53 gene in an ALL cell line, 697, by applying a prime editing (PE) system, which is a versatile genome editing technology. The PE2 system uses an artificial fusion of nickase Cas9 and reverse-transcriptase to directly place new genetic information into a target site through a reverse transcriptase template in the prime editing guide RNA (pegRNA). Moreover, in the advanced PE3b system, single guide RNA (sgRNA) matching the edited sequence is also introduced to improve editing efficiency. The initially obtained MDM2 inhibitor-resistant PE3b-transfected subline revealed disrupted p53 transactivation activity, reduced p53 target gene expression, and acquired resistance to chemotherapeutic agents and irradiation. Although the majority of the subline acquired the designed R248Q and adjacent silent mutations, the insertion of the palindromic sequence in the scaffold hairpin structure of pegRNA and the overlap of the original genomic DNA sequence were frequently observed. Targeted next-generation sequencing reconfirmed frequent edit errors in both PE2 and PE3b-transfected 697 cells, and it revealed frequent successful edits in HEK293T cells. These observations suggest a requirement for further modification of the PE2 and PE3b systems for accurate editing in leukemic cells.


Assuntos
Edição de Genes , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Edição de Genes/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/genética , Proteínas Proto-Oncogênicas c-mdm2/genética
2.
Cancer Sci ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923173

RESUMO

Our study highlights the discovery of recurrent copy number alterations in noncoding regions, specifically blood enhancer cluster (BENC-CNA), in B-precursor acute lymphoblastic leukemia (BCP-ALL) cell lines. We demonstrate that BENC-CNA acts as a super-enhancer, driving MYC expression and possibly contributing to the immortalization and proliferative advantage of BCP-ALL cells in vitro.

3.
Mol Pharmacol ; 103(4): 199-210, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36669880

RESUMO

6-Mercaptopurine (6-MP) is a key component in maintenance therapy for childhood acute lymphoblastic leukemia (ALL). Recent next-generation sequencing analysis of childhood ALL clarified the emergence of the relapse-specific mutations of the NT5C2 and PRPS1 genes, which are involved in thiopurine metabolism. In this scenario, minor clones of leukemia cells could acquire the 6-MP-resistant phenotype as a result of the NT5C2 or PRPS1 mutation during chemotherapy (including 6-MP treatment) and confer disease relapse after selective expansion. Thus, to establish new therapeutic modalities overcoming 6-MP resistance in relapsed ALL, human leukemia models with NT5C2 and PRPS1 mutations in the intrinsic genes are urgently required. Here, mimicking the initiation process of the above clinical course, we sought to induce two relapse-specific hotspot mutations (R39Q mutation of the NT5C2 gene and S103N mutation of the PRPS1 gene) into a human lymphoid leukemia cell line by homologous recombination (HR) using the CRISPR/Cas9 system. After 6-MP selection of the cells transfected with Cas9 combined with single-guide RNA and donor DNA templates specific for either of those two mutations, we obtained the sublines with the intended NT5C2-R39Q and PRPS1-S103N mutation as a result of HR. Moreover, diverse in-frame small insertion/deletions were also confirmed in the 6-MP-resistant sublines at the target sites of the NT5C2 and PRPS1 genes as a result of nonhomologous end joining. These sublines are useful for molecular pharmacological evaluation of the NT5C2 and PRPS1 gene mutations in the 6-MP sensitivity and development of therapy overcoming the thiopurine resistance of leukemia cells. SIGNIFICANCE STATEMENT: Mimicking the initiation process of relapse-specific mutations of the NT5C2 and PRPS1 genes in childhood acute lymphoblastic leukemia treated with 6-mercaptopurine (6-MP), this study sought to introduce NT5C2-R39Q and PRPS1-S103N mutations into a human lymphoid leukemia cell line by homologous recombination using the CRISPR/Cas9 system. In the resultant 6-MP-resistant sublines, the intended mutations and diverse in-frame small insertions/deletions were confirmed, indicating that the obtained sublines are useful for molecular pharmacological evaluation of the NT5C2 and PRPS1 gene mutations.


Assuntos
Mercaptopurina , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Mercaptopurina/farmacologia , Sistemas CRISPR-Cas/genética , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Recidiva , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , 5'-Nucleotidase/uso terapêutico , Ribose-Fosfato Pirofosfoquinase/genética , Ribose-Fosfato Pirofosfoquinase/metabolismo
4.
Blood ; 136(20): 2319-2333, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32573712

RESUMO

Karyotype is an important prognostic factor in childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL), but the underlying pharmacogenomics remain unknown. Asparaginase is an integral component in current chemotherapy for childhood BCP-ALL. Asparaginase therapy depletes serum asparagine. Normal hematopoietic cells can produce asparagine by asparagine synthetase (ASNS) activity, but ALL cells are unable to synthesize adequate amounts of asparagine. The ASNS gene has a typical CpG island in its promoter. Thus, methylation of the ASNS CpG island could be one of the epigenetic mechanisms for ASNS gene silencing in BCP-ALL. To gain deep insights into the pharmacogenomics of asparaginase therapy, we investigated the association of ASNS methylation status with asparaginase sensitivity. The ASNS CpG island is largely unmethylated in normal hematopoietic cells, but it is allele-specifically methylated in BCP-ALL cells. The ASNS gene is located at 7q21, an evolutionally conserved imprinted gene cluster. ASNS methylation in childhood BCP-ALL is associated with an aberrant methylation of the imprinted gene cluster at 7q21. Aberrant methylation of mouse Asns and a syntenic imprinted gene cluster is also confirmed in leukemic spleen samples from ETV6-RUNX1 knockin mice. In 3 childhood BCP-ALL cohorts, ASNS is highly methylated in BCP-ALL patients with favorable karyotypes but is mostly unmethylated in BCP-ALL patients with poor prognostic karyotypes. Higher ASNS methylation is associated with higher L-asparaginase sensitivity in BCP-ALL through lower ASNS gene and protein expression levels. These observations demonstrate that silencing of the ASNS gene as a result of aberrant imprinting is a pharmacogenetic mechanism for the leukemia-specific activity of asparaginase therapy in BCP-ALL.


Assuntos
Asparaginase/uso terapêutico , Aspartato-Amônia Ligase/genética , Variantes Farmacogenômicos/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Animais , Criança , Aberrações Cromossômicas , Metilação de DNA/genética , Impressão Genômica/genética , Humanos , Camundongos
5.
BMC Surg ; 22(1): 268, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820857

RESUMO

BACKGROUND: Pelvic organ prolapse (POP) is greatly affecting the quality of life (QOL) of women. There are some surgical techniques for POP repair, for example, transvaginal mesh surgery (TVM), laparoscopic sacrocolpopexy (LSC), and robot-assisted sacrocolpopexy (RSC). In the United States and Europe, the number of TVM has rapidly decreased since 2011 due to complications and safety concerns and has shifted to LSC/RSC. In Japan, RSC has increased after the insurance coverage of RSC in 2020. Therefore, we compared the surgical outcomes of TVM and RSC in POP surgery. METHODS: We retrospectively collected POP surgery underwent TVM or RSC at our hospital and compared the operative time, blood loss, postoperative hospital stay, postoperative complications, and preoperative and postoperative stress urinary incontinence (SUI) of two groups. Preoperative and postoperative SUI were classified into 3 groups: "improved preoperative SUI", "persistent preoperative SUI" and "de novo SUI", which occurred for the first time in patients with no preoperative SUI, and compared incidence rate. The Mann-Whitney U test and Fisher's exact test were used to compare the two groups, and P < 0.05 was considered statistically significant. RESULTS: From August 2011 to July 2021, 76 POP surgery was performed and they were classified into two groups: TVM group (n = 39) and RSC group (n = 37). There was no difference in patient age and BMI between the TVM and RSC groups. The median of operative time was 78.0 vs. 111.0 min (p = 0.06), blood loss was 20.0 ml vs. 5.0 ml (p < 0.05), and postoperative hospital stay was 4.0 days vs. 3.0 days (p < 0.05), with less blood loss and shorter postoperative hospital stay in the RSC group. There was no difference in postoperative complications between the TVM and RSC groups (17.9% vs. 16.2%, p = 1.00). De novo SUI was 25.6% vs. 5.4% (p < 0.05) in the TVM and RSC groups, of which 23.1% vs. 5.4% (p < 0.05) occurred within 3 months of surgery. CONCLUSION: RSC is more beneficial and less invasive for patients with pelvic organ prolapse than TVM. In addition, de novo SUI as postoperative complication of RSC was lower than of TVM.


Assuntos
Prolapso de Órgão Pélvico , Robótica , Incontinência Urinária por Estresse , Feminino , Humanos , Prolapso de Órgão Pélvico/cirurgia , Complicações Pós-Operatórias/epidemiologia , Qualidade de Vida , Estudos Retrospectivos , Telas Cirúrgicas , Incontinência Urinária por Estresse/complicações , Incontinência Urinária por Estresse/cirurgia
6.
J Cell Mol Med ; 25(22): 10521-10533, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34636169

RESUMO

In chemotherapy for childhood acute lymphoblastic leukaemia (ALL), maintenance therapy consisting of oral daily mercaptopurine and weekly methotrexate is important. NUDT15 variant genotype is reportedly highly associated with severe myelosuppression during maintenance therapy, particularly in Asian and Hispanic populations. It has also been demonstrated that acquired somatic mutations of the NT5C2 and PRPS1 genes, which are involved in thiopurine metabolism, are detectable in a portion of relapsed childhood ALL. To directly confirm the significance of the NUDT15 variant genotype and NT5C2 and PRPS1 mutations in thiopurine sensitivity of leukaemia cells in the intrinsic genes, we investigated 84 B-cell precursor-ALL (BCP-ALL) cell lines. Three and 14 cell lines had homozygous and heterozygous variant diplotypes of the NUDT15 gene, respectively, while 4 and 2 cell lines that were exclusively established from the samples at relapse had the NT5C2 and PRPS1 mutations, respectively. Both NUDT15 variant genotype and NT5C2 and PRPS1 mutations were significantly associated with DNA-incorporated thioguanine levels after exposure to thioguanine at therapeutic concentration. Considering the continuous exposure during the maintenance therapy, we evaluated in vitro mercaptopurine sensitivity after 7-day exposure. Mercaptopurine concentrations lethal to 50% of the leukaemia cells were comparable to therapeutic serum concentration of mercaptopurine. Both NUDT15 variant genotype and NT5C2 and PRPS1 mutations were significantly associated with mercaptopurine sensitivity in 83 BCP-ALL and 23 T-ALL cell lines. The present study provides direct evidence to support the general principle showing that both inherited genotype and somatically acquired mutation are crucially implicated in the drug sensitivity of leukaemia cells.


Assuntos
5'-Nucleotidase/genética , Resistencia a Medicamentos Antineoplásicos/genética , Mercaptopurina/farmacologia , Mutação , Polimorfismo Genético , Pirofosfatases/genética , Ribose-Fosfato Pirofosfoquinase/genética , Alelos , Antimetabólitos Antineoplásicos/farmacologia , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Relação Dose-Resposta a Droga , Genótipo , Humanos
7.
J Cell Mol Med ; 24(22): 12920-12932, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33002292

RESUMO

Identification of genetic variants associated with glucocorticoids (GC) sensitivity of leukaemia cells may provide insight into potential drug targets and tailored therapy. In the present study, within 72 leukaemic cell lines derived from Japanese patients with B-cell precursor acute lymphoblastic leukaemia (ALL), we conducted genome-wide genotyping of single nucleotide polymorphisms (SNP) and attempted to identify genetic variants associated with GC sensitivity and NR3C1 (GC receptor) gene expression. IC50 measures for prednisolone (Pred) and dexamethasone (Dex) were available using an alamarBlue cell viability assay. IC50 values of Pred showed the strongest association with rs904419 (P = 4.34 × 10-8 ), located between the FRMD4B and MITF genes. The median IC50 values of prednisolone for cell lines with rs904419 AA (n = 13), AG (n = 31) and GG (n = 28) genotypes were 0.089, 0.139 and 297 µmol/L, respectively. For dexamethasone sensitivity, suggestive association was observed for SNP rs2306888 (P = 1.43 × 10-6 ), a synonymous SNP of the TGFBR3 gene. For NR3C1 gene expression, suggestive association was observed for SNP rs11982167 (P = 6.44 × 10-8 ), located in the PLEKHA8 gene. These genetic variants may affect GC sensitivity of ALL cells and may give rise to opportunities in personalized medicine for effective and safe chemotherapy in ALL patients.


Assuntos
Regulação Leucêmica da Expressão Gênica , Variação Genética , Glucocorticoides/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Linhagem Celular Tumoral , Dexametasona/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Perfilação da Expressão Gênica , Genótipo , Humanos , Concentração Inibidora 50 , Japão , Farmacogenética , Polimorfismo de Nucleotídeo Único , Prednisolona/farmacologia , Receptores de Glucocorticoides/genética
8.
Cancer Cell Int ; 20(1): 434, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-33499894

RESUMO

BACKGROUND: The genetic variants of the ARID5B gene have recently been reported to be associated with disease susceptibility and treatment outcome in childhood acute lymphoblastic leukemia (ALL). However, few studies have explored the association of ARID5B with sensitivities to chemotherapeutic agents. METHODS: We genotyped susceptibility-linked rs7923074 and rs10821936 as well as relapse-linked rs4948488, rs2893881, and rs6479778 of ARDI5B by direct sequencing of polymerase chain reaction (PCR) products in 72 B-cell precursor-ALL (BCP-ALL) cell lines established from Japanese patients. We also quantified their ARID5B expression levels by real-time reverse transcription PCR, and determined their 50% inhibitory concentration (IC50) values by alamarBlue assays in nine representative chemotherapeutic agents used for ALL treatment. RESULTS: No significant associations were observed in genotypes of the susceptibility-linked single nucleotide polymorphisms (SNPs) and the relapsed-linked SNPs with ARID5B gene expression levels. Of note, IC50 values of vincristine (VCR) (median IC50: 39.6 ng/ml) in 12 cell lines with homozygous genotype of risk allele (C) in the relapse-linked rs4948488 were significantly higher (p = 0.031 in Mann-Whitney U test) than those (1.04 ng/ml) in 60 cell lines with heterozygous or homozygous genotypes of the non-risk allele (T). Furthermore, the IC50 values of mafosfamide [Maf; active metabolite of cyclophosphamide (CY)] and cytarabine (AraC) tended to be associated with the genotype of rs4948488. Similar associations were observed in genotypes of the relapse-linked rs2893881 and rs6479778, but not in those of the susceptibility-linked rs7923074 and rs10821936. In addition, the IC50 values of methotrexate (MTX) were significantly higher (p = 0.023) in 36 cell lines with lower ARID5B gene expression (median IC50: 37.1 ng/ml) than those in the other 36 cell lines with higher expression (16.9 ng/ml). CONCLUSION: These observations in 72 BCP-ALL cell lines suggested that the risk allele of the relapse-linked SNPs of ARID5B may be involved in a higher relapse rate because of resistance to chemotherapeutic agents such as VCR, CY, and AraC. In addition, lower ARID5B gene expression may be associated with MTX resistance.

9.
Hematol Oncol ; 36(1): 245-251, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28850694

RESUMO

Glucocorticoid (GC) shows antileukaemic activity via binding to the GC receptor (GR). The human GR gene has 4 splicing variants besides the functional isoform GRα, but their significance in GC sensitivity of acute lymphoblastic leukaemia (ALL) has been inconsistent. Additionally, several studies evaluated the relevance of GR gene single nucleotide polymorphisms (SNPs) in the GC sensitivity of ALL, but the current cumulative evidence appears inconclusive. Addressing limitations in previous studies, we used a large series of B-cell precursor ALL (BCP-ALL) cell lines established from Japanese patients to comprehensively examine all 5 splicing variants of the GR gene and candidate SNPs, and their association with GC-sensitivity. We performed real-time reverse transcription polymerase chain reaction (RT-PCR) analyses with 10 sets of primers that differentially quantify the 5 isoforms in different combinations, and the strongest correlations with GC sensitivity were observed for the real-time RT-PCR of exons 7 and 8 (prednisolone sensitivity; r = -0.534, R2  = 0.29, P = 1.4 × 10-6 ) and exons 8 and 9a (r = -0.583, R2  = 0.34, P = 7.6 × 10-8 ), both specific for GRα and GRγ isoforms. In contrast, the real-time RT-PCR of junction of exons 3g and 4 and exon 4, specific for GRγ isoform alone, did not show significant correlation with GC sensitivity (prednisolone sensitivity; r = -0.403, R2  = 0.16, P = 4.6 × 10-4 ). These observations are consistent with the notion that GRα plays a central role in the GC-mediated proapoptotic activity in BCP-ALL. In addition, a promoter region SNP genotype (rs72555796) showed a significant association with GC sensitivity (prednisolone sensitivity; P = .010) and tended to show an association with GR gene expression (RT-PCR of exons 7 and 8; P = .170). These findings indicate that isoform profiles and SNP genotypes of the GR gene may be useful indicators of GC sensitivity in BCP-ALL.


Assuntos
Polimorfismo de Nucleotídeo Único/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Receptores de Glucocorticoides/genética , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa