RESUMO
The regenerative potential of neural stem cells (NSCs) declines during aging, leading to cognitive dysfunctions. This decline involves up-regulation of senescence-associated genes, but inactivation of such genes failed to reverse aging of hippocampal NSCs. Because many genes are up-regulated or down-regulated during aging, manipulation of single genes would be insufficient to reverse aging. Here we searched for a gene combination that can rejuvenate NSCs in the aged mouse brain from nuclear factors differentially expressed between embryonic and adult NSCs and their modulators. We found that a combination of inducing the zinc finger transcription factor gene Plagl2 and inhibiting Dyrk1a, a gene associated with Down syndrome (a genetic disorder known to accelerate aging), rejuvenated aged hippocampal NSCs, which already lost proliferative and neurogenic potential. Such rejuvenated NSCs proliferated and produced new neurons continuously at the level observed in juvenile hippocampi, leading to improved cognition. Epigenome, transcriptome, and live-imaging analyses indicated that this gene combination induces up-regulation of embryo-associated genes and down-regulation of age-associated genes by changing their chromatin accessibility, thereby rejuvenating aged dormant NSCs to function like juvenile active NSCs. Thus, aging of NSCs can be reversed to induce functional neurogenesis continuously, offering a way to treat age-related neurological disorders.
Assuntos
Células-Tronco Neurais , Rejuvenescimento , Animais , Hipocampo , Camundongos , Neurogênese/genética , NeurôniosRESUMO
Lysosomes are intracellular organelles responsible for degrading diverse macromolecules delivered from several pathways, including the endo-lysosomal and autophagic pathways. Recent reports have suggested that lysosomes are essential for regulating neural stem cells in developing, adult and aged brains. However, the activity of these lysosomes has yet to be monitored in these brain tissues. Here, we report the development of a new probe to measure lysosomal protein degradation in brain tissue by immunostaining. Our results indicate that lysosomal protein degradation fluctuates in neural stem cells of the hippocampal dentate gyrus, depending on age and brain disorders. Neural stem cells increase their lysosomal activity during hippocampal development in the dentate gyrus, but aging and aging-related disease reduce lysosomal activity. In addition, physical exercise increases lysosomal activity in neural stem cells and astrocytes in the dentate gyrus. We therefore propose that three different stages of lysosomal activity exist: the state of increase during development, the stable state during adulthood and the state of reduction due to damage caused by either age or disease.
Assuntos
Giro Denteado , Células-Tronco Neurais , Animais , Camundongos , Giro Denteado/metabolismo , Proteólise , Células-Tronco Neurais/metabolismo , Astrócitos/metabolismo , Lisossomos/metabolismoRESUMO
Congenital scoliosis, a lateral curvature of the spine caused by vertebral defects, occurs in approximately 1 in 1,000 live births. Here we demonstrate that haploinsufficiency of Notch signaling pathway genes in humans can cause this congenital abnormality. We also show that in a mouse model, the combination of this genetic risk factor with an environmental condition (short-term gestational hypoxia) significantly increases the penetrance and severity of vertebral defects. We demonstrate that hypoxia disrupts FGF signaling, leading to a temporary failure of embryonic somitogenesis. Our results potentially provide a mechanism for the genesis of a host of common sporadic congenital abnormalities through gene-environment interaction.
Assuntos
Interação Gene-Ambiente , Escoliose/embriologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Feminino , Haploinsuficiência , Humanos , Hipóxia/metabolismo , Masculino , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Linhagem , Penetrância , Receptores Notch/metabolismo , Escoliose/congênito , Transdução de Sinais , Coluna Vertebral/embriologiaRESUMO
Somatic stem/progenitor cells are active in embryonic tissues but quiescent in many adult tissues. The detailed mechanisms that regulate active versus quiescent stem cell states are largely unknown. In active neural stem cells, Hes1 expression oscillates and drives cyclic expression of the proneural gene Ascl1, which activates cell proliferation. Here, we found that in quiescent neural stem cells in the adult mouse brain, Hes1 levels are oscillatory, although the peaks and troughs are higher than those in active neural stem cells, causing Ascl1 expression to be continuously suppressed. Inactivation of Hes1 and its related genes up-regulates Ascl1 expression and increases neurogenesis. This causes rapid depletion of neural stem cells and premature termination of neurogenesis. Conversely, sustained Hes1 expression represses Ascl1, inhibits neurogenesis, and maintains quiescent neural stem cells. In contrast, induction of Ascl1 oscillations activates neural stem cells and increases neurogenesis in the adult mouse brain. Thus, Ascl1 oscillations, which normally depend on Hes1 oscillations, regulate the active state, while high Hes1 expression and resultant Ascl1 suppression promote quiescence in neural stem cells.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Encéfalo/citologia , Regulação da Expressão Gênica , Células-Tronco Neurais , Neurogênese/genética , Fatores de Transcrição HES-1/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Inativação Gênica , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Optogenética , Regiões Promotoras Genéticas , Fatores de Transcrição HES-1/metabolismoRESUMO
The balance between proliferation and differentiation of muscle stem cells is tightly controlled, ensuring the maintenance of a cellular pool needed for muscle growth and repair. We demonstrate here that the transcriptional regulator Hes1 controls the balance between proliferation and differentiation of activated muscle stem cells in both developing and regenerating muscle. We observed that Hes1 is expressed in an oscillatory manner in activated stem cells where it drives the oscillatory expression of MyoD. MyoD expression oscillates in activated muscle stem cells from postnatal and adult muscle under various conditions: when the stem cells are dispersed in culture, when they remain associated with single muscle fibers, or when they reside in muscle biopsies. Unstable MyoD oscillations and long periods of sustained MyoD expression are observed in differentiating cells. Ablation of the Hes1 oscillator in stem cells interfered with stable MyoD oscillations and led to prolonged periods of sustained MyoD expression, resulting in increased differentiation propensity. This interfered with the maintenance of activated muscle stem cells, and impaired muscle growth and repair. We conclude that oscillatory MyoD expression allows the cells to remain in an undifferentiated and proliferative state and is required for amplification of the activated stem cell pool.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Proteína MyoD/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição HES-1/metabolismo , Animais , Células Cultivadas , Camundongos , Proteína MyoD/genética , Receptores Notch/metabolismo , Transdução de Sinais , Fatores de Transcrição HES-1/genéticaRESUMO
Individual cellular activities fluctuate but are constantly coordinated at the population level via cell-cell coupling. A notable example is the somite segmentation clock, in which the expression of clock genes (such as Hes7) oscillates in synchrony between the cells that comprise the presomitic mesoderm (PSM)1,2. This synchronization depends on the Notch signalling pathway; inhibiting this pathway desynchronizes oscillations, leading to somite fusion3-7. However, how Notch signalling regulates the synchronicity of HES7 oscillations is unknown. Here we establish a live-imaging system using a new fluorescent reporter (Achilles), which we fuse with HES7 to monitor synchronous oscillations in HES7 expression in the mouse PSM at a single-cell resolution. Wild-type cells can rapidly correct for phase fluctuations in HES7 oscillations, whereas the absence of the Notch modulator gene lunatic fringe (Lfng) leads to a loss of synchrony between PSM cells. Furthermore, HES7 oscillations are severely dampened in individual cells of Lfng-null PSM. However, when Lfng-null PSM cells were completely dissociated, the amplitude and periodicity of HES7 oscillations were almost normal, which suggests that LFNG is involved mostly in cell-cell coupling. Mixed cultures of control and Lfng-null PSM cells, and an optogenetic Notch signalling reporter assay, revealed that LFNG delays the signal-sending process of intercellular Notch signalling transmission. These results-together with mathematical modelling-raised the possibility that Lfng-null PSM cells shorten the coupling delay, thereby approaching a condition known as the oscillation or amplitude death of coupled oscillators8. Indeed, a small compound that lengthens the coupling delay partially rescues the amplitude and synchrony of HES7 oscillations in Lfng-null PSM cells. Our study reveals a delay control mechanism of the oscillatory networks involved in somite segmentation, and indicates that intercellular coupling with the correct delay is essential for synchronized oscillation.
Assuntos
Relógios Biológicos/fisiologia , Desenvolvimento Embrionário/fisiologia , Somitos/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/análise , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Feminino , Genes Reporter/genética , Glicosiltransferases/deficiência , Glicosiltransferases/genética , Masculino , Camundongos , Optogenética , Receptores Notch/metabolismo , Transdução de Sinais , Análise de Célula Única , Somitos/citologia , Fatores de TempoRESUMO
The segmental organization of the vertebral column is established early in embryogenesis, when pairs of somites are rhythmically produced by the presomitic mesoderm (PSM). The tempo of somite formation is controlled by a molecular oscillator known as the segmentation clock1,2. Although this oscillator has been well-characterized in model organisms1,2, whether a similar oscillator exists in humans remains unknown. Genetic analyses of patients with severe spine segmentation defects have implicated several human orthologues of cyclic genes that are associated with the mouse segmentation clock, suggesting that this oscillator might be conserved in humans3. Here we show that human PSM cells derived in vitro-as well as those of the mouse4-recapitulate the oscillations of the segmentation clock. Human PSM cells oscillate with a period two times longer than that of mouse cells (5 h versus 2.5 h), but are similarly regulated by FGF, WNT, Notch and YAP signalling5. Single-cell RNA sequencing reveals that mouse and human PSM cells in vitro follow a developmental trajectory similar to that of mouse PSM in vivo. Furthermore, we demonstrate that FGF signalling controls the phase and period of oscillations, expanding the role of this pathway beyond its classical interpretation in 'clock and wavefront' models1. Our work identifying the human segmentation clock represents an important milestone in understanding human developmental biology.
Assuntos
Relógios Biológicos/fisiologia , Desenvolvimento Embrionário/fisiologia , Somitos/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Técnicas In Vitro , Masculino , Camundongos , Células-Tronco Pluripotentes/citologia , RNA-Seq , Transdução de Sinais , Análise de Célula Única , Somitos/citologiaRESUMO
Self-renewal genes maintain stem cells in an undifferentiated state by preventing the commitment to differentiate. Robust inactivation of self-renewal gene activity following asymmetric stem cell division allows uncommitted stem cell progeny to exit from an undifferentiated state and initiate the commitment to differentiate. Nonetheless, how self-renewal gene activity at mRNA and protein levels becomes synchronously terminated in uncommitted stem cell progeny is unclear. We demonstrate that a multilayered gene regulation system terminates self-renewal gene activity at all levels in uncommitted stem cell progeny in the fly neural stem cell lineage. We found that the RNA-binding protein Brain tumor (Brat) targets the transcripts of a self-renewal gene, deadpan (dpn), for decay by recruiting the deadenylation machinery to the 3' untranslated region (UTR). Furthermore, we identified a nuclear protein, Insensible, that complements Cullin-mediated proteolysis to robustly inactivate Dpn activity by limiting the level of active Dpn through protein sequestration. The synergy between post-transcriptional and transcriptional control of self-renewal genes drives timely exit from the stem cell state in uncommitted progenitors. Our proposed multilayered gene regulation system could be broadly applicable to the control of exit from stemness in all stem cell lineages.
Assuntos
Divisão Celular/genética , Autorrenovação Celular/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Células-Tronco Neurais/citologia , Regiões 3' não Traduzidas/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas Correpressoras/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Inativação Gênica , Proteínas Nucleares/metabolismo , Células-Tronco/citologiaRESUMO
In mammals, circadian clocks are strictly suppressed during early embryonic stages, as well as in pluripotent stem cells, by the lack of CLOCK/BMAL1-mediated circadian feedback loops. During ontogenesis, the innate circadian clocks emerge gradually at a late developmental stage, and with these, the circadian temporal order is invested in each cell level throughout a body. Meanwhile, in the early developmental stage, a segmented body plan is essential for an intact developmental process, and somitogenesis is controlled by another cell-autonomous oscillator, the segmentation clock, in the posterior presomitic mesoderm (PSM). In the present study, focusing upon the interaction between circadian key components and the segmentation clock, we investigated the effect of the CLOCK/BMAL1 on the segmentation clock Hes7 oscillation, revealing that the expression of functional CLOCK/BMAL1 severely interferes with the ultradian rhythm of segmentation clock in induced PSM and gastruloids. RNA sequencing analysis implied that the premature expression of CLOCK/BMAL1 affects the Hes7 transcription and its regulatory pathways. These results suggest that the suppression of CLOCK/BMAL1-mediated transcriptional regulation during the somitogenesis may be inevitable for intact mammalian development.
Assuntos
Fatores de Transcrição ARNTL/metabolismo , Proteínas CLOCK/metabolismo , Ritmo Circadiano , Embrião de Mamíferos/metabolismo , Organoides/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Redes Reguladoras de Genes , Mesoderma/metabolismo , Camundongos , Proteínas Circadianas Period/genética , Somitos/crescimento & desenvolvimento , Somitos/metabolismoRESUMO
Cells communicate with each other to coordinate their gene activities at the population level through signaling pathways. It has been shown that many gene activities are oscillatory and that the frequency and phase of oscillatory gene expression encode various types of information. However, whether or how such oscillatory information is transmitted from cell to cell remains unknown. Here, we developed an integrated approach that combines optogenetic perturbations and single-cell bioluminescence imaging to visualize and reconstitute synchronized oscillatory gene expression in signal-sending and signal-receiving processes. We found that intracellular and intercellular periodic inputs of Notch signaling entrain intrinsic oscillations by frequency tuning and phase shifting at the single-cell level. In this way, the oscillation dynamics are transmitted through Notch signaling, thereby synchronizing the population of oscillators. Thus, this approach enabled us to control and monitor dynamic cell-to-cell transfer of oscillatory information to coordinate gene expression patterns at the population level.
Assuntos
Comunicação Celular/fisiologia , Medições Luminescentes , Optogenética , Transdução de Sinais , Análise de Célula Única/métodos , Animais , Linhagem Celular , Regulação da Expressão Gênica , Camundongos , Receptores Notch/metabolismoRESUMO
The significance of the coupling delay, which is the time required for interactions between coupled oscillators, in various oscillatory dynamics has been investigated mathematically for more than three decades, but its biological significance has been revealed only recently. In the segmentation clock, which regulates the periodic formation of somites in embryos, Hes7 expression oscillates synchronously between neighboring presomitic mesoderm (PSM) cells, and this synchronized oscillation is controlled by Notch signaling-mediated coupling between PSM cells. Recent studies have shown that inappropriate coupling delays dampen and desynchronize Hes7 oscillations, as simulated mathematically, leading to the severe fusion of somites and somite-derived tissues such as the vertebrae and ribs. These results indicate the biological significance of the coupling delay in synchronized Hes7 oscillations in the segmentation clock. The recent development of an in vitro PSM-like system will facilitate the detailed analysis of the coupling delay in synchronized oscillations.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Somitos , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Somitos/metabolismo , Transdução de Sinais/fisiologiaRESUMO
Neural stem cells (NSCs) gradually alter their characteristics during mammalian neocortical development, resulting in the production of various neurons and glial cells, and remain in the postnatal brain as a source of adult neurogenesis. Notch-Hes signaling is a key regulator of stem cell properties in the developing and postnatal brain, and Hes1 is a major effector that strongly inhibits neuronal differentiation and maintains NSCs. To manipulate Hes1 expression levels in NSCs, we generated transgenic (Tg) mice using the Tet-On system. In Hes1-overexpressing Tg mice, NSCs were maintained in both embryonic and postnatal brains, and generation of later-born neurons was prolonged until later stages in the Tg neocortex. Hes1 overexpression inhibited the production of Tbr2+ intermediate progenitor cells but instead promoted the generation of basal radial glia-like cells in the subventricular zone (SVZ) at late embryonic stages. Furthermore, Hes1-overexpressing Tg mice exhibited the expansion of NSCs and enhanced neurogenesis in the SVZ of adult brain. These results indicate that Hes1 overexpression expanded the embryonic NSC pool and led to the expansion of the NSC reservoir in the postnatal and adult brain.
Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias/metabolismo , Expressão Gênica , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Fatores de Transcrição HES-1/genética , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Linhagem Celular , Proliferação de Células , Células Cultivadas , Eletroporação , Células-Tronco Embrionárias/citologia , Imunofluorescência , Hibridização In Situ , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Neurônios/metabolismo , Fatores de Transcrição HES-1/metabolismoRESUMO
In the adult brain, neural stem cells (NSCs) are under the control of various molecular mechanisms to produce an appropriate number of neurons that are essential for specific brain functions. Usually, the majority of adult NSCs stay in a non-proliferative and undifferentiated state known as quiescence, occasionally transitioning to an active state to produce newborn neurons. This transition between the quiescent and active states is crucial for the activity of NSCs. Another significant state of adult NSCs is senescence, in which quiescent cells become more dormant and less reactive, ceasing the production of newborn neurons. Although many genes involved in the regulation of NSCs have been identified using genetic manipulation and omics analyses, the entire regulatory network is complicated and ambiguous. In this review, we focus on transcription factors, whose importance has been elucidated in NSCs by knockout or overexpression studies. We mainly discuss the transcription factors with roles in the active, quiescent, and rejuvenation states of adult NSCs.
Assuntos
Células-Tronco Neurais , Fatores de Transcrição , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Humanos , Animais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Diferenciação Celular , Regulação da Expressão Gênica , Neurônios/metabolismo , Neurônios/citologiaRESUMO
Notch signaling regulates tissue morphogenesis through cell-cell interactions. The Notch effectors Hes1 and Hes7 are expressed in an oscillatory manner and regulate developmental processes such as neurogenesis and somitogenesis, respectively. Expression of the mRNA for the mouse Notch ligand Delta-like1 (Dll1) is also oscillatory. However, the dynamics of Dll1 protein expression are controversial, and their functional significance is unknown. Here, we developed a live-imaging system and found that Dll1 protein expression oscillated in neural progenitors and presomitic mesoderm cells. Notably, when Dll1 expression was accelerated or delayed by shortening or elongating the Dll1 gene, Dll1 oscillations became severely dampened or quenched at intermediate levels, as modeled mathematically. Under this condition, Hes1 and Hes7 oscillations were also dampened. In the presomitic mesoderm, steady Dll1 expression led to severe fusion of somites and their derivatives, such as vertebrae and ribs. In the developing brain, steady Dll1 expression inhibited proliferation of neural progenitors and accelerated neurogenesis, whereas optogenetic induction of Dll1 oscillation efficiently maintained neural progenitors. These results indicate that the appropriate timing of Dll1 expression is critical for the oscillatory networks and suggest the functional significance of oscillatory cell-cell interactions in tissue morphogenesis.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Morfogênese/fisiologia , Neurônios/metabolismo , Células-Tronco/metabolismo , Animais , Proteínas de Ligação ao Cálcio , Comunicação Celular , Proliferação de Células , Células Cultivadas , Técnicas de Introdução de Genes , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Modelos Biológicos , Mutação , Neurogênese/genética , Neurônios/citologia , Receptores Notch/genética , Transdução de Sinais/genética , Somitos/embriologia , Células-Tronco/citologia , Imagem com Lapso de TempoRESUMO
The expression of the transcriptional repressor Hes1 oscillates in many cell types, including neural progenitor cells (NPCs), but the significance of Hes1 oscillations in development is not fully understood. To examine the effect of altered oscillatory dynamics of Hes1, we generated two types of Hes1 knock-in mice, a shortened (type-1) and an elongated (type-2) Hes1 gene, and examined their phenotypes focusing on neural development. Although both mutations affected Hes1 oscillations, the type-1 mutation dampened Hes1 oscillations more severely, resulting in much lower amplitudes. The average levels of Hes1 expression in type-1 mutant NPCs were also lower than in wild-type NPCs but similar to or slightly higher than those in Hes1 heterozygous mutant mice, which exhibit no apparent defects. Whereas type-2 mutant mice were apparently normal, type-1 mutant mice displayed smaller brains than wild-type mice and upregulated proneural gene expression. Furthermore, proliferation of NPCs decreased and cell death increased in type-1 mutant embryos. When Hes3 and Hes5 were additionally deleted, neuronal differentiation was also accelerated, leading to microcephaly. Thus, robust Hes1 oscillations are required for maintenance and proliferation of NPCs and the normal timing of neurogenesis, thereby regulating brain morphogenesis.
Assuntos
Encéfalo/embriologia , Neurônios/fisiologia , Oscilometria , Fatores de Transcrição HES-1/fisiologia , Animais , Morte Celular , Diferenciação Celular , Proliferação de Células , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Homozigoto , Processamento de Imagem Assistida por Computador , Íntrons , Masculino , Camundongos , Modelos Teóricos , Mutação , Células-Tronco Neurais/citologia , NeurogêneseRESUMO
Cultured stem cells have become a standard platform not only for regenerative medicine and developmental biology but also for biophysical studies. Yet, the characterization of cultured stem cells at the level of morphology and of the macroscopic patterns resulting from cell-to-cell interactions remains largely qualitative. Here we report on the collective dynamics of cultured murine neural progenitor cells (NPCs), which are multipotent stem cells that give rise to cells in the central nervous system. At low densities, NPCs moved randomly in an amoeba-like fashion. However, NPCs at high density elongated and aligned their shapes with one another, gliding at relatively high velocities. Although the direction of motion of individual cells reversed stochastically along the axes of alignment, the cells were capable of forming an aligned pattern up to length scales similar to that of the migratory stream observed in the adult brain. The two-dimensional order of alignment within the culture showed a liquid-crystalline pattern containing interspersed topological defects with winding numbers of +1/2 and -1/2 (half-integer due to the nematic feature that arises from the head-tail symmetry of cell-to-cell interaction). We identified rapid cell accumulation at +1/2 defects and the formation of three-dimensional mounds. Imaging at the single-cell level around the defects allowed us to quantify the velocity field and the evolving cell density; cells not only concentrate at +1/2 defects, but also escape from -1/2 defects. We propose a generic mechanism for the instability in cell density around the defects that arises from the interplay between the anisotropic friction and the active force field.
RESUMO
During cochlear development, hair cells (HCs) and supporting cells differentiate in the prosensory domain to form the organ of Corti, but how one row of inner HCs (IHCs) and three rows of outer HCs (OHCs) are organized is not well understood. Here, we investigated the process of HC induction by monitoring Atoh1 expression in cochlear explants of Atoh1-EGFP knock-in mouse embryos and showed that only the cells that express Atoh1 over a certain threshold are selected for HC fate determination. HC induction initially occurs at the medial edge of the prosensory domain to form IHCs and subsequently at the lateral edge to form OHCs, while Hedgehog signaling maintains a space between IHCs and OHCs, leading to formation of the tunnel of Corti. These results reveal dynamic Atoh1 expression in HC fate control and suggest that multi-directional signals regulate OHC induction, thereby organizing the prototype of the organ of Corti.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Cóclea/embriologia , Células Ciliadas Auditivas/citologia , Animais , Padronização Corporal , Proteína Morfogenética Óssea 4/fisiologia , Diferenciação Celular , Linhagem da Célula , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/fisiologia , Proteínas Hedgehog/fisiologia , Imageamento Tridimensional , Camundongos , Microscopia de Fluorescência , Microscopia de Vídeo , Órgão Espiral/embriologia , Receptores Notch/fisiologia , Transdução de SinaisRESUMO
An expanded and folded neocortex is characteristic of higher mammals, including humans and other primates. The neocortical surface area was dramatically enlarged during the course of mammalian brain evolution from lissencephalic to gyrencephalic mammals, and this bestowed higher cognitive functions especially to primates, including humans. In this study, we generated transgenic (Tg) mice in which the expression of Sonic hedgehog (Shh) could be controlled in neural stem cells (NSCs) and neural progenitors by using the Tet-on system. Shh overexpression during embryogenesis promoted the symmetric proliferative division of NSCs in the neocortical region, leading to the expansion of lateral ventricles and tangential extension of the ventricular zone. Moreover, Shh-overexpressing Tg mice showed dramatic expansion of the neocortical surface area and exhibited a wrinkled brain when overexpression was commenced at early stages of neural development. These results indicate that Shh is able to increase the neocortical NSCs and contribute to expansion of the neocortex.
Assuntos
Proteínas Hedgehog/metabolismo , Neocórtex/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Proliferação de Células , Ventrículos Cerebrais/metabolismo , Regulação da Expressão Gênica , Camundongos Transgênicos , Neurônios/citologia , Transdução de SinaisRESUMO
Calcium, the most versatile second messenger, regulates essential biology including crucial cellular events in embryogenesis. We investigated impacts of calcium channels and purinoceptors on neuronal differentiation of normal mouse embryonic stem cells (ESCs), with outcomes being compared to those of in vitro models of Huntington's disease (HD). Intracellular calcium oscillations tracked via real-time fluorescence and luminescence microscopy revealed a significant correlation between calcium transient activity and rhythmic proneuronal transcription factor expression in ESCs stably expressing ASCL-1 or neurogenin-2 promoters fused to luciferase reporter genes. We uncovered that pharmacological manipulation of L-type voltage-gated calcium channels (VGCCs) and purinoceptors induced a two-step process of neuronal differentiation. Specifically, L-type calcium channel-mediated augmentation of spike-like calcium oscillations first promoted stable expression of ASCL-1 in differentiating ESCs, which following P2Y2 purinoceptor activation matured into GABAergic neurons. By contrast, there was neither spike-like calcium oscillations nor responsive P2Y2 receptors in HD-modeling stem cells in vitro. The data shed new light on mechanisms underlying neurogenesis of inhibitory neurons. Moreover, our approach may be tailored to identify pathogenic triggers of other developmental neurological disorders for devising targeted therapies.