RESUMO
Mitochondrial division is essential for mitosis and metazoan development, but a mechanistic role in cancer biology remains unknown. Here, we examine the direct effects of oncogenic RAS(G12V)-mediated cellular transformation on the mitochondrial dynamics machinery and observe a positive selection for dynamin-related protein 1 (DRP1), a protein required for mitochondrial network division. Loss of DRP1 prevents RAS(G12V)-induced mitochondrial dysfunction and renders cells resistant to transformation. Conversely, in human tumor cell lines with activating MAPK mutations, inhibition of these signals leads to robust mitochondrial network reprogramming initiated by DRP1 loss resulting in mitochondrial hyper-fusion and increased mitochondrial metabolism. These phenotypes are mechanistically linked by ERK1/2 phosphorylation of DRP1 serine 616; DRP1(S616) phosphorylation is sufficient to phenocopy transformation-induced mitochondrial dysfunction, and DRP1(S616) phosphorylation status dichotomizes BRAF(WT) from BRAF(V600E)-positive lesions. These findings implicate mitochondrial division and DRP1 as crucial regulators of transformation with leverage in chemotherapeutic success.
Assuntos
Transformação Celular Neoplásica/genética , Dinaminas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas ras/metabolismo , Animais , Linhagem Celular Tumoral , Dinaminas/genética , GTP Fosfo-Hidrolases/genética , Células HT29 , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Mitocondriais/genética , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Serina/metabolismo , Proteínas ras/genéticaRESUMO
Amyloid ß (Aß) oligomers play a critical role in the pathology of Alzheimer's disease. Recently, we reported that a conformation-restricted Aß42 with an intramolecular disulfide bond through cysteine residues at positions 17/28 formed stable oligomers with potent cytotoxicity. To further optimize this compound as a toxic conformer model, we synthesized three analogues with a combination of cysteine and homocysteine at positions 17/28. The analogues with Cys-Cys, Cys-homoCys, or homoCys-Cys, but not the homoCys-homoCys analogue, exhibited potent cytotoxicity against SH-SY5Y and THP-1 cells even at 10â nM. In contrast, the cytotoxicity of conformation-restricted analogues at positions 16/29 or 18/27 was significantly weaker than that of wild-type Aß42. Furthermore, thioflavin-T assay, non-denaturing gel electrophoresis, and morphological studies suggested that the majority of these conformation-restricted analogues exists in an oligomeric state in cell culture medium, indicating that the toxic conformation of Aß42, rather than the oligomeric state, is essential to induce cytotoxicity.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/patologia , Amiloide/química , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/toxicidade , Cisteína , Dissulfetos/química , Humanos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/toxicidadeRESUMO
INTRODUCTION: Primary age-related tauopathy (PART) is a recently described entity that can cause cognitive impairment in the absence of Alzheimer's disease (AD). Here, we compared neuropathological features, tau haplotypes, apolipoprotein E (APOE) genotypes, and cognitive profiles in age-matched subjects with PART and AD pathology. METHODS: Brain autopsies (n = 183) were conducted on participants 85 years and older from the Baltimore Longitudinal Study of Aging and Johns Hopkins Alzheimer's Disease Research Center. Participants, normal at enrollment, were followed with periodic cognitive evaluations until death. RESULTS: Compared with AD, PART subjects showed significantly slower rates of decline on measures of memory, language, and visuospatial performance. They also showed lower APOE ε4 allele frequency (4.1% vs. 17.6%, P = .0046). DISCUSSION: Our observations suggest that PART is separate from AD and its distinction will be important for the clinical management of patients with cognitive impairment and for public health care planning.
Assuntos
Envelhecimento/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Disfunção Cognitiva/genética , Neuropatologia , Tauopatias/genética , Idoso de 80 Anos ou mais , Apolipoproteína E4/genética , Autopsia , Baltimore , Encéfalo , Genótipo , Humanos , Estudos Longitudinais , Memória , Testes NeuropsicológicosRESUMO
Guanine nucleotide-binding proteins (G proteins) act as molecular switches to regulate many fundamental cellular processes. The lipid modification, palmitoylation, can be considered as a key factor for proper G protein function and plasma membrane localization. In Dictyostelium discoidum, Gα2 is essential for the chemotactic response to cAMP in their developmental life cycle. However, the regulation of Gα2 with respect to palmitoylation, activation and Gßγ association is less clear. In this study, Gα2 is shown to be palmitoylated on Cys-4 by [3 H]palmitate labeling. Loss of this palmitoylation site results in redistribution of Gα2 within the cell and poor D. discoideum development. Cellular re-localization is also observed for activated Gα2. In the membrane fraction, Gα2-wt (YFP) is highly enriched in a low-density membrane fraction, which is palmitoylation-dependent. Activated Gα2 monomer and heterotrimer are shifted to two different higher-density fractions. These results broaden our understanding of how G protein localization and function are regulated inside the cells.
Assuntos
Dictyostelium/enzimologia , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Lipoilação/fisiologia , Proteínas de Protozoários/metabolismoRESUMO
Mitochondrial dynamics and mitophagy have been linked to cardiovascular and neurodegenerative diseases. Here, we demonstrate that the mitochondrial division dynamin Drp1 and the Parkinson's disease-associated E3 ubiquitin ligase parkin synergistically maintain the integrity of mitochondrial structure and function in mouse heart and brain. Mice lacking cardiac Drp1 exhibited lethal heart defects. In Drp1KO cardiomyocytes, mitochondria increased their connectivity, accumulated ubiquitinated proteins, and decreased their respiration. In contrast to the current views of the role of parkin in ubiquitination of mitochondrial proteins, mitochondrial ubiquitination was independent of parkin in Drp1KO hearts, and simultaneous loss of Drp1 and parkin worsened cardiac defects. Drp1 and parkin also play synergistic roles in neuronal mitochondrial homeostasis and survival. Mitochondrial degradation was further decreased by combination of Drp1 and parkin deficiency, compared with their single loss. Thus, the physiological importance of parkin in mitochondrial homeostasis is revealed in the absence of mitochondrial division in mammals.
Assuntos
Encéfalo/metabolismo , Dinaminas/metabolismo , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Miócitos Cardíacos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Dinaminas/genética , Tomografia com Microscopia Eletrônica , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Cadeias Pesadas de Miosina/genética , UbiquitinaçãoRESUMO
Abnormal accumulation of TDP-43 into cytoplasmic or nuclear inclusions with accompanying nuclear clearance, a common pathology initially identified in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), has also been found in Alzheimer' disease (AD). TDP-43 serves as a splicing repressor of nonconserved cryptic exons and that such function is compromised in brains of ALS and FTD patients, suggesting that nuclear clearance of TDP-43 underlies its inability to repress cryptic exons. However, whether TDP-43 cytoplasmic aggregates are a prerequisite for the incorporation of cryptic exons is not known. Here, we assessed hippocampal tissues from 34 human postmortem brains including cases with confirmed diagnosis of AD neuropathologic changes along with age-matched controls. We found that cryptic exon incorporation occurred in all AD cases exhibiting TDP-43 pathology. Furthermore, incorporation of cryptic exons was observed in the hippocampus when TDP-43 inclusions was restricted only to the amygdala, the earliest stage of TDP-43 progression. Importantly, cryptic exon incorporation could be detected in AD brains lacking TDP-43 inclusion but exhibiting nuclear clearance of TDP-43. These data supports the notion that the functional consequence of nuclear depletion of TDP-43 as determined by cryptic exon incorporation likely occurs as an early event of TDP-43 proteinopathy and may have greater contribution to the pathogenesis of AD than currently appreciated. Early detection and effective repression of cryptic exons in AD patients may offer important diagnostic and therapeutic implications for this devastating illness of the elderly.
Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Estudos de Coortes , Éxons , Feminino , Humanos , Imuno-Histoquímica , Masculino , Neurônios/metabolismo , Neurônios/patologia , Proteinopatias TDP-43/metabolismo , Proteinopatias TDP-43/patologiaRESUMO
PURPOSE: To investigate B0 -field-orientation dependent white matter contrast in the human brainstem based on R2 * and frequency difference (Δf) mapping from gradient echo (GRE) imaging at 11.7T. METHODS: Multi-echo GRE data were acquired from two fixed human brainstem specimens at multiple orientations with respect to the static B0 field. The B0 -orientation dependent modulation curves of R2 * and Δf measurements between short and long echo time regimes were used to reconstruct maps of three-dimensional (3D) white matter orientation vectors. The results were compared with maps from diffusion MRI, susceptibility tensor imaging, and histological staining of the same specimens. RESULTS: R2 * and Δf maps demonstrated distinct and significant contrast modulation between the corticospinal tract (CST) and transverse pontine fibers (TPF) dependent on B0 orientation. Interleaved fiber orientations of the CST and TPF could be sensitively resolved based on field-orientation-dependent fitting of the R2 * and Δf measurements. The fitted 3D orientation vector maps and peak-to-peak amplitude of R2 * and Δf modulation exhibited close correspondence to primary eigenvector and anisotropy maps derived from diffusion MRI. The amplitude of B0 -orientation dependent R2 * modulation was significantly (P < 0.005) higher in the CST compared with TPF, while fractional anisotropies were comparable. CONCLUSION: The findings of this study demonstrate the potential of B0 -orientation dependent susceptibility-induced R2 * and Δf contrasts to probe tract-specific orientation and microstructure in white matter. Magn Reson Med 75:2455-2463, 2016. © 2016 Wiley Periodicals, Inc.
Assuntos
Tronco Encefálico/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Adulto , Algoritmos , Anisotropia , Humanos , Tratos Piramidais/diagnóstico por imagemRESUMO
Mitochondria grow, divide, and fuse in cells. Mitochondrial division is critical for the maintenance of the structure and function of mitochondria. Alterations in this process have been linked to many human diseases, including peripheral neuropathies and aging-related neurological disorders. In this review, we discuss recent progress in mitochondrial division by focusing on molecular and in vivo analyses of the evolutionarily conserved, central component of mitochondrial division, dynamin-related protein 1 (Drp1), in the yeast and mouse model organisms.
Assuntos
Dinaminas/metabolismo , Técnicas de Inativação de Genes , Saccharomyces cerevisiae/genética , Animais , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/ultraestruturaRESUMO
Mitochondrial DNA instability disorders are responsible for a large clinical spectrum, among which amyotrophic lateral sclerosis-like symptoms and frontotemporal dementia are extremely rare. We report a large family with a late-onset phenotype including motor neuron disease, cognitive decline resembling frontotemporal dementia, cerebellar ataxia and myopathy. In all patients, muscle biopsy showed ragged-red and cytochrome c oxidase-negative fibres with combined respiratory chain deficiency and abnormal assembly of complex V. The multiple mitochondrial DNA deletions found in skeletal muscle revealed a mitochondrial DNA instability disorder. Patient fibroblasts present with respiratory chain deficiency, mitochondrial ultrastructural alterations and fragmentation of the mitochondrial network. Interestingly, expression of matrix-targeted photoactivatable GFP showed that mitochondrial fusion was not inhibited in patient fibroblasts. Using whole-exome sequencing we identified a missense mutation (c.176C>T; p.Ser59Leu) in the CHCHD10 gene that encodes a coiled-coil helix coiled-coil helix protein, whose function is unknown. We show that CHCHD10 is a mitochondrial protein located in the intermembrane space and enriched at cristae junctions. Overexpression of a CHCHD10 mutant allele in HeLa cells led to fragmentation of the mitochondrial network and ultrastructural major abnormalities including loss, disorganization and dilatation of cristae. The observation of a frontotemporal dementia-amyotrophic lateral sclerosis phenotype in a mitochondrial disease led us to analyse CHCHD10 in a cohort of 21 families with pathologically proven frontotemporal dementia-amyotrophic lateral sclerosis. We identified the same missense p.Ser59Leu mutation in one of these families. This work opens a novel field to explore the pathogenesis of the frontotemporal dementia-amyotrophic lateral sclerosis clinical spectrum by showing that mitochondrial disease may be at the origin of some of these phenotypes.
Assuntos
Esclerose Lateral Amiotrófica/etiologia , DNA Mitocondrial/genética , Demência Frontotemporal/etiologia , Mitocôndrias/patologia , Doenças Mitocondriais/complicações , Proteínas Mitocondriais/genética , Idade de Início , Idoso , Alelos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Exoma/genética , Feminino , Demência Frontotemporal/genética , Demência Frontotemporal/fisiopatologia , Células HeLa , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/genética , Doenças Mitocondriais/genética , Mutação de Sentido Incorreto , Linhagem , FenótipoRESUMO
The objective of this study was to elucidate the effect of partial reduction of the mitochondrial fission protein, dynamin-related protein 1 (Drp1) on mitochondrial activity and synaptic viability. Recent knockout studies of Drp1 revealed that homozygote Drp1 knockout mice are embryonic lethal due to reduced mitochondrial fission, and that this reduced fission leads to developmental defects in the brain. In contrast, heterozygote Drp1 knockout mice appear to be normal in terms of lifespan, fertility, and viability, and phenotypically these animals are not different from wild-type mice. However, the effects of partial Drp1 reduction on mitochondrial function and synaptic activity are not well understood. In the present study, we sought to characterize synaptic, dendritic and mitochondrial proteins, and mitochondrial function and GTPase enzymatic activity, in Drp1 heterozygote knockout mice. Interestingly, we found no significant changes in synaptic, dendritic, and mitochondrial proteins in the Drp1 heterozygote knockout mice compared to the wild-type mice. Further, mitochondrial function and GTPase enzymatic activity appeared to be normal. However, H(2)O(2) and lipid peroxidation levels were significantly reduced in the Drp1 heterozygote knockout mice compared to the wild-type mice. These findings suggest that partial Drp1 reduction does not affect mitochondrial and synaptic viability and may have therapeutic use in treating patients with Alzheimer's disease and Huntington's disease.
Assuntos
Dinaminas/genética , Dinaminas/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Sinapses/metabolismo , Animais , Encéfalo/metabolismo , Células Cultivadas , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxidos Lipídicos/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Sinapses/genéticaRESUMO
Mitochondrial ferritin (FtMt) is an endogenous iron-storage protein localized in the mitochondria. FtMt is mainly observed in restricted tissues, such as those in the testis, islets of Langerhans, and brain. Further, it may protect cells from oxidative stress in neurodegenerative diseases, including Alzheimer's disease and progressive supranuclear palsy. However, the role of FtMt in Parkinson's disease (PD) remains unclear. Therefore, the current study investigated the localization and expression level of FtMt in the midbrain of patients with PD and healthy controls using immunohistochemical techniques. FtMt immunoreactivity was mainly detected in dopaminergic neurons in the substantia nigra pars compacta (SNc) in both healthy controls and patients with PD. In addition, FtMt-positive particles were observed outside the dopaminergic neurons in patients with PD. Based on a quantitative comparison, patients with PD had a significantly upregulated FtMt immunoreactivity in dopaminergic neurons than healthy controls. Our result might be helpful in future studies on the role of FtMt in PD.
RESUMO
In the pathogenesis of Alzheimer's disease (AD), highly neurotoxic amyloid-ß (Aß) oligomers appear early, they are thus considered to be deeply involved in the onset of Alzheimer's disease. However, Aß oligomer visualization is challenging in human tissues due to their multiple forms (e.g., low- and high-molecular-weight oligomers, including protofibrils) as well as their tendency to rapidly change forms and aggregate. In this review, we present two visualization approaches for Aß oligomers in tissues: an immunohistochemical (using the monoclonal antibody TxCo1 against toxic Aß oligomer conformers) and imaging mass spectrometry using the small chemical Shiga-Y51 that specifically binds Aß oligomers. TxCo1 immunohistochemistry revealed Aß oligomer distributions in postmortem human brains with AD. Using Shiga-Y51, imaging mass spectrometry revealed Aß oligomer distributions in the brain of a transgenic mouse model for AD. These two methods would potentially contribute to elucidating the pathological mechanisms underlying AD.
RESUMO
Since amyloid ß (Aß) oligomers are more cytotoxic than fibrils, various dimer models have been synthesized. We focused on the C-terminal region that could form a hydrophobic core in the aggregation process and identified a toxic conformer-restricted dimer model (E22P,G38DAP-Aß40 dimer) with an l,l-2,6-diaminopimelic acid linker (n = 3) at position 38, which exhibited moderate cytotoxicity. We synthesized four additional linkers (n = 2, 4, 5, 7) to determine the most appropriate distance between the two Aß40 monomers for a toxic dimer model. Each di-Fmoc-protected two-valent amino acid was synthesized from a corresponding dialdehyde or cycloalkene followed by ozonolysis, using a Horner-Wadsworth-Emmons reaction and asymmetric hydrogenation. Then, the corresponding Aß40 dimer models with these linkers at position 38 were synthesized using the solid-phase Fmoc strategy. Their cytotoxicity toward SH-SY5Y cells suggested that the shorter the linker length, the stronger the cytotoxicity. Particularly, the E22P,G38DAA-Aß40 dimer (n = 2) formed protofibrillar aggregates and exhibited the highest cytotoxicity, equivalent to E22P-Aß42, the most cytotoxic analogue of Aß42. Ion mobility-mass spectrometry (IM-MS) measurement indicated that all dimer models except the E22P,G38DAA-Aß40 dimer existed as stable oligomers (12-24-mer). NativePAGE analysis supported the IM-MS data, but larger oligomers (30-150-mer) were also detected after a 24 h incubation. Moreover, E22P,G38DAA-Aß40, E22P,G38DAP-Aß40, and E22P,G38DAZ-Aß40 (n = 5) dimers suppressed long-term potentiation (LTP). Overall, the ability to form fibrils with cross ß-sheet structures was key to achieving cytotoxicity, and forming stable oligomers less than 150-mer did not correlate with cytotoxicity and LTP suppression.
Assuntos
Doença de Alzheimer , Cicloparafinas , Neuroblastoma , Ozônio , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Ácido Diaminopimélico , Humanos , Fragmentos de Peptídeos/metabolismoRESUMO
Oligomers of the amyloid ß (Aß) protein play a critical role in the pathogenesis of Alzheimer's disease. However, their heterogeneity and lability deter the identification of their tertiary structures and mechanisms of action. Aß trimers and Aß dimers may represent the smallest aggregation unit with cytotoxicity. Although propeller-type trimer models of E22P-Aß40 tethered by an aromatic linker have recently been synthesized, they unexpectedly exhibited little cytotoxicity. To increase the flexibility of trimeric propeller-type models, we designed and synthesized trimer models with an alkyl linker, tert-butyltris-l-alanine (tButA), at position 36 or 38. In addition, we synthesized two parallel-type trimer models tethered at position 38 using alkyl linkers of different lengths, α,α-di-l-norvalyl-l-glycine (di-nV-Gly) and α,α-di-l-homonorleucyl-l-glycine (di-hnL-Gly), based on the previously reported toxic dimer model. The propeller-type E22P,V36tButA-Aß40 trimer (4), which was designed to mimic the C-terminal anti-parallel ß-sheet structures proposed by the structural analysis of 150 kDa oligomers of Aß42, and the parallel-type E22P,G38di-nV-Gly-Aß40 trimer (6) showed significant cytotoxicity against SH-SY5Y cells and aggregative ability to form protofibrillar species. In contrast, the E22P,G38tButA-Aß40 trimer (5) and E22P,G38di-hnL-Gly-Aß40 trimer (7) exhibited weak cytotoxicity, though they formed quasi-stable oligomers observed by ion mobility-mass spectrometry and native polyacrylamide gel electrophoresis. These results suggest that 4 and 6 could have some phase of the structure of toxic Aß oligomers with a C-terminal hydrophobic core and that the conformation and/or aggregation process rather than the formation of stable oligomers contribute to the induction of cytotoxicity.
Assuntos
Doença de Alzheimer , Neuroblastoma , Doença de Alzheimer/metabolismo , Amiloide , Peptídeos beta-Amiloides/metabolismo , Glicina , Humanos , Fragmentos de Peptídeos/metabolismoRESUMO
Characterization of amyloid ß (Aß) oligomers, the transition species present prior to the formation of Aß fibrils and that have cytotoxicity, has become one of the major topics in the investigations of Alzheimer's disease (AD) pathogenesis. However, studying pathophysiological properties of Aß oligomers is challenging due to the instability of these protein complexes in vitro. Here, we report that conformation-restricted Aß42 with an intramolecular disulfide bond at positions 17 and 28 (SS-Aß42) formed stable Aß oligomers in vitro. Thioflavin T binding assays, nondenaturing gel electrophoresis, and morphological analyses revealed that SS-Aß42 maintained oligomeric structure, whereas wild-type Aß42 and the highly aggregative Aß42 mutant with E22P substitution (E22P-Aß42) formed Aß fibrils. In agreement with these observations, SS-Aß42 was more cytotoxic compared to the wild-type and E22P-Aß42 in cell cultures. Furthermore, we developed a monoclonal antibody, designated TxCo-1, using the toxic conformation of SS-Aß42 as immunogen. X-ray crystallography of the TxCo-1/SS-Aß42 complex, enzyme immunoassay, and immunohistochemical studies confirmed the recognition site and specificity of TxCo-1 to SS-Aß42. Immunohistochemistry with TxCo-1 antibody identified structures resembling senile plaques and vascular Aß in brain samples of AD subjects. However, TxCo-1 immunoreactivity did not colocalize extensively with Aß plaques identified with conventional Aß antibodies. Together, these findings indicate that Aß with a turn at positions 22 and 23, which is prone to form Aß oligomers, could show strong cytotoxicity and accumulated in brains of AD subjects. The SS-Aß42 and TxCo-1 antibody should facilitate understanding of the pathological role of Aß with toxic conformation in AD.