Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; : e202400273, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819992

RESUMO

Photocatalysis using transition-metal complexes is widely considered the future of effective and affordable clean-air technology. In particular, redox-stable, easily accessible ligands are decisive. Here, we report a straightforward and facile synthesis of a new highly stable 2,6-bis(triazolyl)pyridine ligand, containing a nitrile moiety as a masked anchoring group, using copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction. The reported structure mimics the binding motif of uneasy to synthesize ligands. Pulse radiolysis under oxidizing and reducing conditions provided evidence for the high stability of the formed radical cation and radical anion 2,6-di(1,2,3-triazol-1-yl)-pyridine compound, thus indicating the feasibility of utilizing this as a ligand for redox active metal complexes and the sensitization of metal-oxide semiconductors (e.g., TiO2 nanoparticles or nanotubes).

2.
Inorg Chem ; 62(9): 3761-3775, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36534941

RESUMO

A series of {V12}-nuclearity polyoxovanadate cages covalently functionalized with one or sandwiched by two phthalocyaninato (Pc) lanthanide (Ln) moieties via V-O-Ln bonds were prepared and fully characterized for paramagnetic Ln = SmIII-ErIII and diamagnetic Ln = LuIII, including YIII. The LnPc-functionalized {V12O32} cages with fully oxidized vanadium centers in the ground state were isolated as (nBu4N)3[HV12O32Cl(LnPc)] and (nBu4N)2[HV12O32Cl(LnPc)2] compounds. As corroborated by a combined experimental (EPR, DC and AC SQUID, laser photolysis transient absorption spectroscopy, and electrochemistry) and computational (DFT, MD, and model Hamiltonian approach) methods, the compounds feature intra- and intermolecular electron transfer that is responsible for a partial reduction at V(3d) centers from VV to VIV in the solid state and at high sample concentrations. The effects are generally Ln dependent and are clearly demonstrated for the (nBu4N)3[HV12O32Cl(LnPc)] representative with Ln = LuIII or DyIII. Intramolecular charge transfer takes place for Ln = LuIII and occurs from a Pc ligand via the Ln center to the {V12O32} core of the same molecule, whereas for Ln = DyIII, only intermolecular charge transfer is allowed, which is realized from Pc in one molecule to the {V12O32} core of another molecule usually via the nBu4N+ countercation. For all Ln but DyIII, two of these phenomena may be present in different proportions. Besides, it is demonstrated that (nBu4N)3[HV12O32Cl(DyPc)] is a field-induced single molecule magnet with a maximal relaxation time of the order 10-3 s. The obtained results open up the way to further exploration and fine-tuning of these three modular molecular nanocomposites regarding tailoring and control of their Ln-dependent charge-separated states (induced by intramolecular transfer) and relaxation dynamics as well as of electron hopping between molecules. This should enable us to realize ultra-sensitive polyoxometalate powered quasi-superconductors, sensors, and data storage/processing materials for quantum technologies and neuromorphic computing.

3.
J Am Chem Soc ; 143(30): 11703-11713, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34292703

RESUMO

Graphene liquid cell transmission electron microscopy (TEM) has enabled the observation of a variety of nanoscale transformations. Yet understanding the chemistry of the liquid cell solution and its impact on the observed transformations remains an important step toward translating insights from liquid cell TEM to benchtop chemistry. Gold nanocrystal etching can be used as a model system to probe the reactivity of the solution. FeCl3 has been widely used to promote gold oxidation in bulk and liquid cell TEM studies, but the roles of the halide and iron species have not been fully elucidated. In this work, we observed the etching trajectories of gold nanocrystals in different iron halide solutions. We observed an increase in gold nanocrystal etch rate going from Cl-- to Br-- to I--containing solutions. This is consistent with a mechanism in which the dominant role of halides is as complexation agents for oxidized gold species. Additionally, the mechanism through which FeCl3 induces etching in liquid cell TEM remains unclear. Ground-state bleaching of the Fe(III) absorption band observed through pulse radiolysis indicates that iron may react with Cl2·- radicals to form an oxidized transient species under irradiation. Complete active space self-consistent field (CASSCF) calculations indicate that the FeCl3 complex is oxidized to an Fe species with an OH radical ligand. Together our data indicate that an oxidized Fe species may be the active oxidant, while halides modulate the etch rate by tuning the reduction potential of gold nanocrystals.

4.
Chemistry ; 27(68): 16896-16903, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34713512

RESUMO

Cobaloximes are promising, earth-abundant catalysts for the light-driven hydrogen evolution reaction (HER). Typically, these cobalt(III) complexes are prepared in situ or employed in their neutral form, for example, [Co(dmgH)2 (py)Cl], even though related complex salts have been reported previously and could, in principle, offer improved catalytic activity as well as more efficient immobilization on solid support. Herein, we report an interdisciplinary investigation into complex salts [Co(dmgH)2 (py)2 ]+ [Co(dmgBPh2 )2 Cl2 ]- , TBA + [ Co ( dmgBPh 2 ) 2 Cl 2 ] - and [Co(dmgH)2 (py)2 ]+ BArF- . We describe their strategic syntheses from the commercially available complex [Co(dmgH)2 (py)Cl] and demonstrate that these double and single complex salts are potent catalysts for the light-driven HER. We also show that scanning electrochemical cell microscopy can be used to deposit arrays of catalysts [Co(dmgH)2 (py)2 ]+ [Co(dmgBPh2 )2 Cl2 ]- , TBA + [ Co ( dmgBPh 2 ) 2 Cl 2 ] - and [Co(dmgH)2 (py)Cl] on supported and free-standing amino-terminated ∼1-nm-thick carbon nanomembranes (CNMs). Photocatalytic H2 evolution at such arrays was quantified with Pd microsensors by scanning electrochemical microscopy, thus providing a new approach for catalytic evaluation and opening up novel routes for the creation and analysis of "designer catalyst arrays", nanoprinted in a desired pattern on a solid support.

5.
J Org Chem ; 86(9): 6111-6125, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33843224

RESUMO

Substituted 2,6-dicyanoanilines are versatile electron donor-acceptor compounds, which have recently received considerable attention, since they exhibit strong fluorescence and may have utility in the synthesis of fluorescent materials, non-natural photosynthetic systems, and materials with nonlinear optical properties. The majority of known synthetic procedures are, however, "stop-and-go" reaction processes involving time-consuming and waste-producing isolation and purification of product intermediates. Here, we present the synthesis of substituted 2,6-dicyanoanilines via atom-economical and eco-friendly one-pot processes, involving metal-free domino reactions, and their subsequent photochemical and photophysical measurements and theoretical calculations. These studies exhibit the existence of an easily tunable radical ion pair-based charge-transfer (CT) emission in the synthesized 2,6-dicyanoaniline-based electron donor-acceptor systems. The charge-transfer processes were explored by photochemical and radiation chemical measurements, in particular, based on femtosecond laser photolysis transient absorption spectroscopy and time-resolved emission spectroscopy, accompanied by pulse radiolysis and complemented by quantum chemical investigations employing time-dependent density-functional theory. This chromophore class exhibits a broad-wavelength-range fine-tunable charge recombination emission with high photoluminescence quantum yields up to 0.98. Together with its rather simple and cost-effective synthesis (using easily available starting materials) and customizable properties, it renders this class of compounds feasible candidates as potential dyes for future optoelectronic devices like organic light-emitting diodes (OLEDs).

6.
Angew Chem Int Ed Engl ; 60(41): 22307-22314, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34060211

RESUMO

Hexaarylbenzene (HAB) derivatives are versatile aromatic systems playing a significant role as chromophores, liquid crystalline materials, molecular receptors, molecular-scale devices, organic light-emitting diodes and candidates for organic electronics. Statistical synthesis of simple symmetrical HABs is known via cyclotrimerization or Diels-Alder reactions. By contrast, the synthesis of more complex, asymmetrical systems, and without involvement of statistical steps, remains an unsolved problem. Here we present a generally applicable synthetic strategy to access asymmetrical HAB via an atom-economical and high-yielding metal-free four-step domino reaction using nitrostyrenes and α,α-dicyanoolefins as easily available starting materials. Resulting domino product-functionalized triarylbenzene (TAB)-can be used as a key starting compound to furnish asymmetrically substituted hexaarylbenzenes in high overall yield and without involvement of statistical steps. This straightforward domino process represents a distinct approach to create diverse and still unexplored HAB scaffolds, containing six different aromatic rings around central benzene core.

7.
J Am Chem Soc ; 142(44): 18769-18781, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33084308

RESUMO

There are notably few literature reports of electron donor-acceptor oligoynes, even though they offer unique opportunities for studying charge transport through "all-carbon" molecular bridges. In this context, the current study focuses on a series of carbazole-(C≡C)n-2,5-diphenyl-1,3,4-oxadiazoles (n = 1-4) as conjugated π-systems in general and explores their photophysical properties in particular. Contrary to the behavior of typical electron donor-acceptor systems, for these oligoynes, the rates of charge recombination after photoexcitation increase with increasing electron donor-acceptor distance. To elucidate this unusual performance, we conducted detailed photophysical and time-dependent density functional theory investigations. Significant delocalization of the molecular orbitals along the bridge indicates that the bridging states come into resonance with either the electron donor or acceptor, thereby accelerating the charge transfer. Moreover, the calculated bond lengths reveal a reduction in bond-length alternation upon photoexcitation, indicating significant cumulenic character of the bridge in the excited state. In short, strong vibronic coupling between the electron-donating N-arylcarbazoles and the electron-accepting 1,3,4-oxadiazoles accelerates the charge recombination as the oligoyne becomes longer.

8.
Phys Chem Chem Phys ; 21(38): 21464-21472, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31535122

RESUMO

Analyzing and interpreting the nanoscale morphology of semiconducting polymers is one of the key challenges for advancing in organic electronics. The orientation persistence length (OPL) as a tool to analyze orientation maps generated by photoemission electron microscopy (PEEM) - a state of the art tool for nanoscale imaging/spectroscopy - is presented here. The OPL is a way to quantify the chain orientation within the polymer film in a single graph. In this regard, it is a convincing method that will enable additional direct correlations between the chain orientation and electrical or optical parameters. In this report, we provide computational insights into the factors that contribute to the OPL.

9.
Phys Chem Chem Phys ; 20(37): 24477-24489, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30222172

RESUMO

Herein, the synthesis of three covalently linked donor-acceptor zinc porphyrin-fullerene (ZnP-C60) dyads (C60trZnPCOOH, C60trZnPtrCOOH and C60ZnPCOOH) is described, and their application as sensitizers in NiO-based dye-sensitized solar cells (DSCs) is discussed. To the best of our knowledge, this is the first example where covalently linked ZnP-C60 dyads have been used as chromophores in NiO-based DSCs. In an effort to examine whether the distance of the chromophore from the electron acceptor entity and/or the NiO surface affects the performance of the cells, a triazole ring was introduced as a spacer between ZnP and the two peripheral units C60 and -COOH. The triazole ring was inserted between ZnP and C60 in dyad C60trZnPCOOH, whereas both the anchoring group and C60 were connected to ZnP through triazole spacers in C60trZnPtrCOOH, and dyad C60ZnPCOOH did not contain any triazole linker. Photophysical investigation performed by ultrafast transient absorption spectroscopy in solution and on the NiO surface demonstrated that all the porphyrin-fullerene dyads exhibited long-lived charge-separated states due to electron shifts from the reduced porphyrin core to C60. The transient experiments performed in solution showed that the presence of triazole ring influenced the photophysical properties of the dyads C60trZnPCOOH and C60trZnPtrCOOH and in particular, increased the lifetime of the charge-separated states compared to that of the C60ZnPCOOH dyad. On the other hand, the corresponding studies on the NiO surface proved that the triazole spacer has a rather moderate impact on the charge separation (NiO-ZnP˙+-C60˙-) and charge recombination (NiO-3*ZnP-C60) rate constants. All three dyads exhibited enhanced performance in terms of photovoltaic measurements with more than threefold increase compared to the reference compound PhtrZnPCOOH in which the C60 acceptor is absent. Two different electrolytes were examined (I3-/I- and CoIII/II) and in most cases, the presence of the triazole ring enhanced their photovoltaic performance. The best performing dyad in I3-/I- was C60trZnPCOOH (PCE = 0.076%); in CoIII/II, the best performing dyad was C60trZnPtrCOOH (PCE = 0.074%).

10.
Phys Chem Chem Phys ; 20(33): 21269-21279, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30039139

RESUMO

We report on the synthesis, characterization and photophysical properties of a donor-bridge-acceptor supramolecular hybrid system, consisting of a tetrapyridyl fullerene derivative (C60-tpyr) as electron acceptor, with the four pyridyl groups as part of oligophenyleneethynylene/phenylenevinylene bridges, and zinc porphyrin dimers (ZnP)2 as electron donor species. Based on the metal-to-ligand coordination between the zinc metal centers of (ZnP)2 and the four pyridyl entities of C60-tpyr, a strong binding constant (5 × 105 M-1) for the formation of C60-tpyr·[(ZnP)2]2 was evidenced. Insights into the electronic interactions between the photoactive (ZnP)2 units and C60-tpyr emanated from complementary physicochemical assays, which were further supported by theoretical calculations. Notably, the absorption and emission titration assays revealed strong interactions between the electron donor and acceptor species within C60-tpyr·[(ZnP)2]2, both in the ground and excited state. Moreover, femtosecond and nanosecond laser photolysis transient absorption measurements were performed and provided solid evidence for intramolecular electron transfer processes derived from the singlet excited state of (ZnP)2 to C60-tpyr. Comparison with systems in which either four monomeric zinc porphyrins (ZnP) were complexed with C60-tpyr or a (ZnP)2 was coordinated with a dipyridylfullerene revealed the beneficial role of C60-tpyr in increasing the lifetime of charge-separation.

12.
Inorg Chem ; 56(24): 14912-14925, 2017 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-29155569

RESUMO

A dinuclear ruthenium complex bridged by 2,3,5,6-pyrazinetetracarboxylic acid (µ-LH22-) was synthesized and characterized by X-ray crystallography, cyclic voltammetry under ambient and elevated pressures, electron paramagnetic resonance (EPR) and UV/vis-NIR (NIR = near-infrared) spectroelectrochemistry, pulse radiolysis, and computational methods. We probed for the first time in the field of mixed-valency the use of high-pressure electrochemical methods. The investigations were directed toward the influence of the protonation state of the bridging ligand on the electronic communication between the ruthenium ions, since such behavior is interesting in terms of modulating redox chemistry by pH. Starting from the [RuII(µ-LH22-)RuII]0 configuration, which shows an intense metal-to-ligand charge transfer absorption band at 600 nm, cyclic voltammetry revealed a pH-independent, reversible one-electron reduction and a protonation-state-dependent (proton coupled electron transfer, PCET) reversible oxidation. Deeper insight into the electrode reactions was provided by pressure-dependent cyclic voltammetry up to 150 MPa, providing insight into the conformational changes, the protonation state, and the environment of the molecule during the redox processes. Spectroelectrochemical investigations (EPR, UV/vis-NIR) of the respective redox reactions suggest a ligand-centered radical anion [RuII(µ-LH2•3-)RuII]- upon reduction (EPR Δg = 0.042) and an ambiguous, EPR-silent one-electron oxidized state. In both cases, the absence of the otherwise typical broad intervalence charge transfer bands in the NIR region for mixed-valent complexes support the formulation as radical anionic bridged compound. However, on the basis of high-pressure electrochemical data and density functional theory calculations the one-electron oxidized form could be assigned as a charge-delocalized [RuII.5(µ-LH22-)RuII.5]+ valence tautomer rather than [RuIII(µ-LH2•3-)RuIII]+. Deprotonation of the bridging ligand causes a severe shift of the redox potential for the metal-based oxidation toward lower potentials, yielding the charge-localized [RuIII(µ-LH3-)RuII]0 complex. This PCET process is accompanied by large intrinsic volume changes. All findings are supported by computational methods (geometry optimization, spin population analysis). For all redox processes, valence alternatives are discussed.

13.
J Phys Chem A ; 121(22): 4242-4252, 2017 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-28498660

RESUMO

A very efficient metal-mediated strategy led, in a single step, to a quantitative construction of a new three-component multichromophoric system containing one fullerene monoadduct, one aluminium(III) monopyridylporphyrin, and one ruthenium(II) tetraphenylporphyrin. The Al(III) monopyridylporphyrin component plays the pivotal role in directing the correct self-assembly process and behaves as the antenna unit for the photoinduced processes of interest. A detailed study of the photophysical behavior of the triad was carried out in different solvents (CH2Cl2, THF, and toluene) by stationary and time-resolved emission and absorption spectroscopy in the pico- and nanosecond time domains. Following excitation of the Al-porphyrin, the strong fluorescence typical of this unit was strongly quenched. The time-resolved absorption experiments provided evidence for the occurrence of stepwise photoinduced electron and hole transfer processes, leading to a charge-separated state with reduced fullerene acceptor and oxidized ruthenium porphyrin donor. The time constant values measured in CH2Cl2 for the formation of charge-separated state Ru-Al+-C60- (10 ps), the charge shift process (Ru-Al+-C60- → Ru+-Al-C60-), where a hole is transferred from Al-based to Ru-based unit (75 ps), and the charge recombination process to ground state (>5 ns), can be rationalized within the Marcus theory. Although the charge-separating performance of this triad is not outstanding, this study demonstrates that, using the self-assembling strategy, improvements can be obtained by appropriate chemical modifications of the individual molecular components.

14.
Angew Chem Int Ed Engl ; 55(37): 11020-5, 2016 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-27159570

RESUMO

The regio- and stereocontrolled synthesis of fullerene bisadducts is a topic of increasing interest in fullerene chemistry and a key point for the full exploitation of these derivatives in materials science. In this context, while the tether-directed remote functionalization strategy offers a valid approach to this synthetic challenge, no examples of such control have yet been reported using nontethered species. Presented here is a conceptually novel, supramolecular-directed functionalization approach in which noncovalent interactions between untethered residues have been used, for the first time, to amplify (>2800-fold) the regio-, stereo-, and atropselective formation of a C60 fullerene bisadduct racemate from a complex mixture of 130 bisadducts. Remarkably, both enantiomers, which present a sterically demanding cis-1 C60 addition pattern, represent the first examples of fullerene derivatives which combine central, axial, and helical chirality.

15.
Chemistry ; 21(36): 12755-68, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26234516

RESUMO

Two novel synthetic strategies to covalently link a metallocene electron-donor unit to a chlorin ring are presented. In one approach, pyropheophorbide a is readily converted into its 13(1) -ferrocenyl dehydro derivative by nucleophilic addition of the ferrocenyl anion to the 13(1) -carbonyl group. In another approach, the corresponding 13(1) -pentamethylruthenocenyl derivative is synthesised from 13(1) -fulvenylchlorin by a facile ligand exchange/deprotonation reaction with the [RuCp*(cod)Cl] (Cp*=pentamethylcyclopentadienyl; cod=1,5-cyclooctadiene) complex. The resulting metallocene-chlorins exhibit reduced aromaticity, which was unequivocally supported by ring-current calculations based on the gauge-including magnetically induced current (GIMIC) method and by calculated nucleus-independent chemical shift (NICS) values. The negative ring current in the isocyclic E ring suggests the antiaromatic character of this moiety and also clarifies the spontaneous reactivity of the complexes with oxygen. The oxidation products were isolated and their electrochemical and photophysical properties were studied. The ruthenocene derivatives turned out to be stable under light irradiation and showed photoinduced charge transfer with charge-separation lifetimes of 152-1029 ps.

16.
Chemistry ; 21(2): 590-600, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25381747

RESUMO

In the present study, a biomimetic reaction center model, that is, a molecular triad consisting of a chlorin dimer and an azafulleroid, is synthesized and its photophysical properties are studied in comparison with the corresponding molecular dyad, which consists only of a chlorin monomer and an azafulleroid. As evidenced by (1) H NMR, UV/Vis, and fluorescence spectroscopy, the chlorin dimer-azafulleroid folds in nonpolar media into a C2 -symmetric geometry through hydrogen bonding, resulting in appreciable electronic interactions between the chlorins, whereas in polar media the two chlorins diverge from contact. Femtosecond transient absorption spectroscopy studies reveal longer charge-separated states for the chlorin dimer-azafulleroid; ≈1.6 ns in toluene, compared with the lifetime of ≈0.9 ns for the corresponding chlorin monomer-azafulleroid in toluene. In polar media, for example, benzonitrile, similar charge-separated states are observed, but the lifetimes are inevitably shorter: 65 and 73 ps for the dimeric and monomeric chlorin-azafulleroids, respectively. Nanosecond transient absorption and singlet oxygen phosphorescence studies corroborate that in toluene, the charge-separated state decays indirectly via the triplet excited state to the ground state, whereas in benzonitrile, direct recombination to the ground state is observed. Complementary DFT studies suggest two energy-minima conformations, that is, a folded chlorin dimer-azafulleroid, which is present in nonpolar media, and another conformation in polar media, in which the two hydrophobic chlorins wrap the azafulleroid. Inspection of the frontier molecular orbitals shows that in the folded conformation, the HOMO on each chlorin is equivalent and is shared owing to partial π-π overlap, resulting in delocalization of the conjugated π electrons, whereas the wrapped conformation lacks this stabilization. As such, the longer charge-separated lifetime for the dimer is rationalized by both the electron donor-acceptor separation distance and the stabilization of the radical cation through delocalization. The chlorin folding seems to change the photophysical properties in a manner similar to that observed in the chlorophyll dimer in natural photosynthetic reaction centers.


Assuntos
Materiais Biomiméticos/química , Fulerenos/química , Porfirinas/química , Clorofila/química , Dimerização , Modelos Moleculares , Fotossíntese , Rodopseudomonas/química , Rodopseudomonas/fisiologia
17.
Inorg Chem ; 54(1): 280-92, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25523017

RESUMO

A new triad system featuring one zinc porphyrin and one fullerene moieties attached to a central redox-active Re(I) connector was obtained in remarkable yield by cleverly exploiting a facile two-step synthesis. Detailed description and discussion on the characterization of this multicomponent system and of its parent free-base analogue are presented, along with a kinetic study of the stepwise electron-transfer processes occurring upon visible excitation.


Assuntos
2,2'-Dipiridil/química , Complexos de Coordenação/química , Elétrons , Fulerenos/química , Metaloporfirinas/química , Rênio/química , Cátions Monovalentes , Complexos de Coordenação/síntese química , Transporte de Elétrons , Cinética , Luz , Espectroscopia de Ressonância Magnética , Oxirredução , Processos Fotoquímicos
18.
J Phys Chem A ; 118(25): 4382-91, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24818962

RESUMO

We report on a mechanistic investigation regarding the reduction of [Co(III)(dmgH)2(py)(Cl)] (dmg = dimethylglyoxime) by several complementary techniques. The reduction of [Co(III)(dmgH)2(py)(Cl)] was initiated by either electrochemical, photochemical, or pulse radiolytical techniques, and the corresponding products were analyzed by ESI mass spectrometry. In addition, all of the rate constants for each step were determined. We have found solid experimental as well as theoretical evidence for the appearance of a dinuclear complex [Co(II)Co(III)(dmgH)4(py)2(H2O)2](+) to be the final product of reduction, implying the initially reduced form of [Co(III)(dmgH)2(py)(Cl)] undergoes a dimerization with the starting material in solution.

19.
Adv Sci (Weinh) ; : e2401595, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38868906

RESUMO

The 2-bit Lindqvist-type polyoxometalate (POM) [V6O13((OCH2)3CCH2N3)2]2- with a diamagnetic {V6O19} core and azide termini shows six fully oxidized VV centers in solution as well as the solid state, according to 51V NMR spectroscopy. Under UV irradiation, it exhibits reversible switching between its ground S0 state and the energetically higher lying states in acetonitrile and water solutions. TD-DFT calculations demonstrate that this process is mainly initialized by excitation from the S0 to S9 state. Pulse radiolysis transient absorption spectroscopy experiments with a solvated electron point out photochemically induced charge disproportionation of VV into VIV and electron communication between the POM molecules via their excited states. The existence of this unique POM-to-POM electron communication is also indicated by X-ray photoelectron spectroscopy (XPS) studies on gold-metalized silicon wafers (Au//SiO2//Si) under ambient conditions. The amount of reduced vanadium centers in the "confined" environment increases substantially after beam irradiation with soft X-rays compared to non-irradiated samples. The excited state of one POM anion seems to give rise to subsequent electron transfer from another POM anion. However, this reaction is prohibited as soon as the relaxed T1 state of the POM is reached.

20.
J Am Chem Soc ; 135(51): 19311-8, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24328274

RESUMO

Here, we show that the synergistic interplay between two binding equilibria, acting at different sites of a (Zn)phthalocyanine-amidine molecule (Pc1), enables the dissociation of the photoinactive phthalocyanine dimer (Pc1)2 into a three-component system, in which a sequence of light harvesting, charge separation, and charge shift is successfully proven. The aforementioned dimer is assembled by dual amidine-Zn(II) coordination between neighboring Pc1 molecules and gives rise to high association constants (KD ≈ 10(11) M(-1)). Such extraordinary stability hampers the individual binding of either carboxylic acid ligands through the amidine group or pyridine-type ligands through the Zn(II) metal atom to (Pc1)2. However, the combined addition of both ligands, which cooperatively bind to different sites of Pc1 through distinct noncovalent interactions, efficiently shifts the overall equilibrium toward a photoactive tricomponent species. In particular, when a fullerene-carboxylic acid (C60A) and either a dimethylamino-pyridine (DMAP) or a phenothiazine-pyridine ligand (PTZP) are simultaneously present, the photoactivity is turned on and evidence is given for an electron transfer from photoexcited Pc1 to the electron-accepting C60A that affords the DMAP-Pc1(•+)-C60A(•-) or PTZP-Pc1(•+)-C60A(•-) radical ion pair states. Only in the latter case does a cascade of photoinduced electron transfer processes afford the PTZP(•+)-Pc1-C60A(•-) radical ion pair state. The latter is formed via a thermodynamically driven charge shift evolving from PTZP-Pc1(•+)-C60A(•-) and exhibits lifetimes that are notably longer than those of DMAP-Pc1(•+)-C60A(•-).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa