Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanomedicine ; 55: 102724, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007066

RESUMO

In recent decades, nanopores have become a promising diagnostic tool. Protein and solid-state nanopores are increasingly used for both RNA/DNA sequencing and small molecule detection. The latter is of great importance, as their detection is difficult or expensive using available methods such as HPLC or LC-MS. DNA aptamers are an excellent detection element for sensitive and specific detection of small molecules. Herein, a method for quantifying small molecules using a ready-to-use sequencing platform is described. Taking ethanolamine as an example, a strand displacement assay is developed in which the target-binding aptamer is displaced from the surface of magnetic particles by ethanolamine. Non-displaced aptamer and thus the ethanolamine concentration are detected by the nanopore system and can be quantified in the micromolar range using our in-house developed analysis software. This method is thus the first to describe a label-free approach for the detection of small molecules in a protein nanopore system.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanoporos , Etanolamina/análise , Etanolamina/química , Etanolaminas , DNA/química , Sequência de Bases , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos
2.
Lipids Health Dis ; 20(1): 156, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34743684

RESUMO

Rash, photosensitivity, erythema multiforme, and the acute generalized exanthematous pustulosis (AGEP) are relatively uncommon adverse reactions of drugs. To date, the etiology is not well understood and individual susceptibility still remains unknown. Amiodarone, chlorpromazine, amitriptyline, and trimipramine are classified lysosomotropic as well as photosensitizing, however, they fail to trigger rash and pruritic papules in all individuals. Lysosomotropism is a common charcteristic of various drugs, but independent of individuals. There is evidence that the individual ability to respond to external oxidative stress is crosslinked with the elongation of long-chain fatty acids to very long-chain fatty acids by ELOVLs. ELOVL6 and ELOVL7 are sensitive to ROS induced depletion of cellular NADPH and insufficient regeneration via the pentose phosphate pathway and mitochondrial fatty acid oxidation. Deficiency of NADPH in presence of lysosomotropic drugs promotes the synthesis of C16-ceramide in lysosomes and may contribute to emerging pruritic papules of AGEP. However, independently from a lysosomomotropic drug, severe depletion of ATP and NAD(P)H, e.g., by UV radiation or a potent photosensitizer can trigger likewise the collapse of the lysosomal transmembrane proton gradient resulting in lysosomal C16-ceramide synthesis and pruritic papules. This kind of papules are equally present in polymorphous light eruption (PMLE/PLE) and acne aestivalis (Mallorca acne). The suggested model of a compartmentalized ceramide metabolism provides a more sophisticated explanation of cutaneous drug adverse effects and the individual sensitivity to UV radiation. Parameters such as pKa and ClogP of the triggering drug, cutaneous fatty acid profile, and ceramide profile enables new concepts in risk assessment and scoring of AGEP as well as prophylaxis outcome.


Assuntos
Pustulose Exantematosa Aguda Generalizada/tratamento farmacológico , Pustulose Exantematosa Aguda Generalizada/etiologia , Amitriptilina/farmacocinética , Ceramidas/metabolismo , Esfingolipídeos/metabolismo , Pustulose Exantematosa Aguda Generalizada/patologia , Vesícula/induzido quimicamente , Dermatite Atópica/etiologia , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Antagonistas dos Receptores Histamínicos/efeitos adversos , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , NADP/metabolismo , Transtornos de Fotossensibilidade/etiologia , Transtornos de Fotossensibilidade/metabolismo , Fármacos Fotossensibilizantes/efeitos adversos
3.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466437

RESUMO

Precise and rapid identification and characterization of pathogens and antimicrobial resistance patterns are critical for the adequate treatment of infections, which represent an increasing problem in intensive care medicine. The current situation remains far from satisfactory in terms of turnaround times and overall efficacy. Application of an ineffective antimicrobial agent or the unnecessary use of broad-spectrum antibiotics worsens the patient prognosis and further accelerates the generation of resistant mutants. Here, we provide an overview that includes an evaluation and comparison of existing tools used to diagnose bacterial infections, together with a consideration of the underlying molecular principles and technologies. Special emphasis is placed on emerging developments that may lead to significant improvements in point of care detection and diagnosis of multi-resistant pathogens, and new directions that may be used to guide antibiotic therapy.


Assuntos
Antibacterianos/uso terapêutico , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/tratamento farmacológico , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana/métodos
4.
Int J Mol Sci ; 22(4)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670304

RESUMO

Lysosomotropism is a biological characteristic of small molecules, independently present of their intrinsic pharmacological effects. Lysosomotropic compounds, in general, affect various targets, such as lipid second messengers originating from lysosomal enzymes promoting endothelial stress response in systemic inflammation; inflammatory messengers, such as IL-6; and cathepsin L-dependent viral entry into host cells. This heterogeneous group of drugs and active metabolites comprise various promising candidates with more favorable drug profiles than initially considered (hydroxy) chloroquine in prophylaxis and treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections/Coronavirus disease 2019 (COVID-19) and cytokine release syndrome (CRS) triggered by bacterial or viral infections. In this hypothesis, we discuss the possible relationships among lysosomotropism, enrichment in lysosomes of pulmonary tissue, SARS-CoV-2 infection, and transition to COVID-19. Moreover, we deduce further suitable approved drugs and active metabolites based with a more favorable drug profile on rational eligibility criteria, including readily available over-the-counter (OTC) drugs. Benefits to patients already receiving lysosomotropic drugs for other pre-existing conditions underline their vital clinical relevance in the current SARS-CoV2/COVID-19 pandemic.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Descoberta de Drogas , Lisossomos/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Antivirais/farmacocinética , Antivirais/uso terapêutico , COVID-19/imunologia , COVID-19/metabolismo , COVID-19/virologia , Clorpromazina/farmacocinética , Clorpromazina/farmacologia , Clorpromazina/uso terapêutico , Síndrome da Liberação de Citocina/tratamento farmacológico , Descoberta de Drogas/métodos , Reposicionamento de Medicamentos/métodos , Fluvoxamina/farmacocinética , Fluvoxamina/farmacologia , Fluvoxamina/uso terapêutico , Humanos , Hidroxicloroquina/farmacocinética , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Interleucina-1/antagonistas & inibidores , Interleucina-1/imunologia , Interleucina-6/antagonistas & inibidores , Interleucina-6/imunologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/virologia , Lisossomos/imunologia , Lisossomos/metabolismo , Lisossomos/virologia , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Bibliotecas de Moléculas Pequenas/farmacocinética , Bibliotecas de Moléculas Pequenas/uso terapêutico , Replicação Viral/efeitos dos fármacos
5.
Molecules ; 26(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34279406

RESUMO

Three novel pyrazolo-[4,3-e][1,2,4]triazolopyrimidine derivatives (1, 2, and 3) were designed, synthesized, and evaluated for their in vitro biological activity. All three compounds exhibited different levels of cytotoxicity against cervical and breast cancer cell lines. However, compound 1 showed the best antiproliferative activity against all tested tumor cell lines, including HCC1937 and HeLa cells, which express high levels of wild-type epidermal growth factor receptor (EGFR). Western blot analyses demonstrated that compound 1 inhibited the activation of EGFR, protein kinase B (Akt), and extracellular signal-regulated kinase (Erk)1/2 in breast and cervical cancer cells at concentrations of 7 and 11 µM, respectively. The results from docking experiments with EGFR suggested the binding of compound 1 at the ATP binding site of EGFR. Furthermore, the crystal structure of compound 3 (7-(4-bromophenyl)-9-(pyridin-4-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine) was determined by single crystal X-ray analysis. Our work represents a promising starting point for the development of a new series of compounds targeting EGFR.


Assuntos
Antineoplásicos/síntese química , Receptores ErbB/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Pirimidinas/química , Triazóis/química , Antineoplásicos/farmacologia , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células HeLa , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
6.
J Nanobiotechnology ; 18(1): 130, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32912236

RESUMO

Fast point-of-care (POC) diagnostics represent an unmet medical need and include applications such as lateral flow assays (LFAs) for the diagnosis of sepsis and consequences of cytokine storms and for the treatment of COVID-19 and other systemic, inflammatory events not caused by infection. Because of the complex pathophysiology of sepsis, multiple biomarkers must be analyzed to compensate for the low sensitivity and specificity of single biomarker targets. Conventional LFAs, such as gold nanoparticle dyed assays, are limited to approximately five targets-the maximum number of test lines on an assay. To increase the information obtainable from each test line, we combined green and red emitting quantum dots (QDs) as labels for C-reactive protein (CRP) and interleukin-6 (IL-6) antibodies in an optical duplex immunoassay. CdSe-QDs with sharp and tunable emission bands were used to simultaneously quantify CRP and IL-6 in a single test line, by using a single UV-light source and two suitable emission filters for readout through a widely available BioImager device. For image and data processing, a customized software tool, the MultiFlow-Shiny app was used to accelerate and simplify the readout process. The app software provides advanced tools for image processing, including assisted extraction of line intensities, advanced background correction and an easy workflow for creation and handling of experimental data in quantitative LFAs. The results generated with our MultiFlow-Shiny app were superior to those generated with the popular software ImageJ and resulted in lower detection limits. Our assay is applicable for detecting clinically relevant ranges of both target proteins and therefore may serve as a powerful tool for POC diagnosis of inflammation and infectious events.


Assuntos
Biomarcadores/análise , Proteína C-Reativa/análise , Imunoensaio/métodos , Interleucina-6/análise , Pontos Quânticos/química , Sepse/diagnóstico , Anticorpos/imunologia , Betacoronavirus/isolamento & purificação , Proteína C-Reativa/imunologia , COVID-19 , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Humanos , Interleucina-6/imunologia , Limite de Detecção , Pandemias , Pneumonia Viral/diagnóstico , Pneumonia Viral/virologia , Sistemas Automatizados de Assistência Junto ao Leito , SARS-CoV-2 , Sepse/metabolismo , Software , Raios Ultravioleta
7.
Int J Mol Sci ; 21(14)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668803

RESUMO

In line with SARS and MERS, the SARS-CoV-2/COVID-19 pandemic is one of the largest challenges in medicine and health care worldwide. SARS-CoV-2 infection/COVID-19 provides numerous therapeutic targets, each of them promising, but not leading to the success of therapy to date. Neither an antiviral nor an immunomodulatory therapy in patients with SARS-CoV-2 infection/COVID-19 or pre-exposure prophylaxis against SARS-CoV-2 has proved to be effective. In this review, we try to close the gap and point out the likely relationships among lysosomotropism, increasing lysosomal pH, SARS-CoV-2 infection, and disease process, and we deduce an approach for the treatment and prophylaxis of COVID-19, and cytokine release syndrome (CRS)/cytokine storm triggered by bacteria or viruses. Lysosomotropic compounds affect prominent inflammatory messengers (e.g., IL-1B, CCL4, CCL20, and IL-6), cathepsin-L-dependent viral entry of host cells, and products of lysosomal enzymes that promote endothelial stress response in systemic inflammation. As supported by recent clinical data, patients who have already taken lysosomotropic drugs for other pre-existing conditions likely benefit from this treatment in the COVID-19 pandemic. The early administration of a combination of antivirals such as remdesivir and lysosomotropic drugs, such as the antibiotics teicoplanin or dalbavancin, seems to be able to prevent SARS-CoV-2 infection and transition to COVID-19.


Assuntos
Infecções por Coronavirus/patologia , Lisossomos/metabolismo , Pneumonia Viral/patologia , Enzima de Conversão de Angiotensina 2 , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Betacoronavirus/isolamento & purificação , Betacoronavirus/fisiologia , COVID-19 , Proteases 3C de Coronavírus , Infecções por Coronavirus/complicações , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/patologia , Humanos , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/complicações , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , SARS-CoV-2 , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Internalização do Vírus/efeitos dos fármacos
8.
Int J Mol Sci ; 21(17)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847028

RESUMO

Assessment of hematotoxicity from environmental or xenobiotic compounds is of notable interest and is frequently assessed via the colony forming unit (CFU) assay. Identification of the mode of action of single compounds is of further interest, as this often enables transfer of results across different tissues and compounds. Metabolomics displays one promising approach for such identification, nevertheless, suitability with current protocols is restricted. Here, we combined a hematopoietic stem and progenitor cell (HSPC) expansion approach with distinct lineage differentiations, resulting in formation of erythrocytes, dendritic cells and neutrophils. We examined the unique combination of pathway activity in glycolysis, glutaminolysis, polyamine synthesis, fatty acid oxidation and synthesis, as well as glycerophospholipid and sphingolipid metabolism. We further assessed their interconnections and essentialness for each lineage formation. By this, we provide further insights into active metabolic pathways during the differentiation of HSPC into different lineages, enabling profound understanding of possible metabolic changes in each lineage caused by exogenous compounds.


Assuntos
Linhagem da Célula/fisiologia , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Metaboloma , Células Mieloides/fisiologia , Antígenos CD34/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem da Célula/genética , Células Cultivadas , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/fisiologia , Humanos , Redes e Vias Metabólicas/genética , Metabolômica , RNA-Seq
9.
Adv Sci (Weinh) ; 11(21): e2308806, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38528800

RESUMO

One of the most important public health concerns is the increase in antibiotic-resistant pathogens and corresponding treatment of associated infections. Addressing this challenge requires more efficient use of antibiotics, achievable by the use of evidence-based, effective antibiotics identified by antibiotic susceptibility testing (AST). However, the current standard method of phenotypic AST used for this purpose requires 48 h or more from sample collection to result. Until results are available, broad-spectrum antibiotics are used to avoid delaying treatment. The turnaround time must therefore be shortened in order for the results to be available before the second administration of antibiotics. The phenotypic electrochemical AST method presented here identifies effective antibiotics within 5-10 h after sampling. Spiked serum samples, including polymicrobial samples, with clinically relevant pathogens and respective concentrations commonly found in bloodstream infections (Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa) are used. Direct loading of the test with diluted serum eliminates the need for a pre-culture, as required by existing methods. Furthermore, by combining several electrochemical measurement procedures with computational analysis, allowing the method to be used both online and offline, the AST achieves a sensitivity of 94.44% and a specificity of 95.83% considering each replicate individually.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Fenótipo , Impressão Tridimensional , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana/métodos , Humanos , Staphylococcus aureus/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos
10.
Commun Biol ; 7(1): 640, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796645

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common autosomal dominant muscle disorders, yet no cure or amelioration exists. The clinical presentation is diverse, making it difficult to identify the actual driving pathomechanism among many downstream events. To unravel this complexity, we performed a meta-analysis of 13 original omics datasets (in total 171 FSHD and 129 control samples). Our approach confirmed previous findings about the disease pathology and specified them further. We confirmed increased expression of former proposed DUX4 biomarkers, and furthermore impairment of the respiratory chain. Notably, the meta-analysis provides insights about so far not reported pathways, including misregulation of neuromuscular junction protein encoding genes, downregulation of the spliceosome, and extensive alterations of nuclear envelope protein expression. Finally, we developed a publicly available shiny app to provide a platform for researchers who want to search our analysis for genes of interest in the future.


Assuntos
Distrofia Muscular Facioescapuloumeral , Junção Neuromuscular , Membrana Nuclear , Spliceossomos , Humanos , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/metabolismo , Distrofia Muscular Facioescapuloumeral/patologia , Membrana Nuclear/metabolismo , Membrana Nuclear/genética , Spliceossomos/metabolismo , Spliceossomos/genética , Junção Neuromuscular/metabolismo , Junção Neuromuscular/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Regulação da Expressão Gênica
11.
Diagnostics (Basel) ; 12(6)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35741190

RESUMO

Kynurenine is a tryptophan metabolite linked to several inflammatory processes including transplant failure, a significant challenge in transplant medicine. The detection of small molecules such as kynurenine, however, is often complex and time consuming. Herein, we report the successful synthesis of a fluorescently labelled kynurenine derivative, showing proper fluorescence and anti-kynurenine antibody binding behavior in a magnetic bead immunoassay (MIA). The fluorescent kynurenine-rhodamine B conjugate shows a KD-value of 5.9 µM as well as IC50 values of 4.0 µM in PBS and 10.2 µM in saliva. We thus introduce a rapid test for kynurenine as a potential biomarker for kidney transplant failure.

12.
Orphanet J Rare Dis ; 16(1): 129, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712050

RESUMO

Whilst a disease-modifying treatment for Facioscapulohumeral muscular dystrophy (FSHD) does not exist currently, recent advances in complex molecular pathophysiology studies of FSHD have led to possible therapeutic approaches for its targeted treatment. Although the underlying genetics of FSHD have been researched extensively, there remains an incomplete understanding of the pathophysiology of FSHD in relation to the molecules leading to DUX4 gene activation and the downstream gene targets of DUX4 that cause its toxic effects. In the context of the local proximity of chromosome 4q to the nuclear envelope, a contraction of the D4Z4 macrosatellite induces lower methylation levels, enabling the ectopic expression of DUX4. This disrupts numerous signalling pathways that mostly result in cell death, detrimentally affecting skeletal muscle in affected individuals. In this regard different options are currently explored either to suppress the transcription of DUX4 gene, inhibiting DUX4 protein from its toxic effects, or to alleviate the symptoms triggered by its numerous targets.


Assuntos
Distrofia Muscular Facioescapuloumeral , Proteínas de Homeodomínio/genética , Humanos , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Transdução de Sinais , Ativação Transcricional
13.
Cells ; 10(10)2021 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-34685682

RESUMO

Exposure to ubiquitous endocrine-disrupting chemicals (EDCs) is a major public health concern. We analyzed the physiological impact of the EDC, di-2-ethylhexyl phthalate (DEHP), and found that its metabolite, mono-2-ethylhexyl phthalate (MEHP), had significant adverse effects on myeloid hematopoiesis at environmentally relevant concentrations. An analysis of the underlying mechanism revealed that MEHP promotes increases in reactive oxygen species (ROS) by reducing the activity of superoxide dismutase in all lineages, possibly via its actions at the aryl hydrocarbon receptor. This leads to a metabolic shift away from glycolysis toward the pentose phosphate pathway and ultimately results in the death of hematopoietic cells that rely on glycolysis for energy production. By contrast, cells that utilize fatty acid oxidation for energy production are not susceptible to this outcome due to their capacity to uncouple ATP production. These responses were also detected in non-hematopoietic cells exposed to alternate inducers of ROS.


Assuntos
Diferenciação Celular , Linhagem da Célula , Dietilexilftalato/toxicidade , Ácidos Graxos/metabolismo , Células-Tronco Hematopoéticas/patologia , Plastificantes/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Dendritos/efeitos dos fármacos , Dietilexilftalato/análogos & derivados , Eritrócitos/efeitos dos fármacos , Glutamina/metabolismo , Glicólise/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Lipidômica , Neutrófilos/efeitos dos fármacos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Poliaminas/metabolismo , Superóxido Dismutase/metabolismo
14.
PLoS One ; 15(5): e0233357, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32433650

RESUMO

Trace elements and minerals are compounds that are essential for the support of a variety of biological functions and play an important role in the formation of and the defense against oxidative stress. Here we describe a technique, allowing sequential detection of the trace elements (K, Zn, Se, Cu, Mn, Fe, Mg) in serum and whole blood by an ICP-MS method using single work-up, which is a simple, quick and robust method for the sequential measurement and quantification of the trace elements Sodium (Na), Potassium (K), Calcium (Ca), Zinc (Zn), Selenium (Se), Copper (Cu), Iron (Fe), Manganese (Mn) and Magnesium (Mg) in whole blood as well as Copper (Cu), Selenium (Se), Zinc (Zn), Iron (Fe), Magnesium (Mg), Manganese (Mn), Chromium (Cr), Nickel (Ni), Gold (Au) and Lithium (Li) in human serum. For analysis, only 100 µl of serum or whole blood is sufficient, which make this method suitable for detecting trace element deficiency or excess in newborns and infants. All samples were processed and analyzed by ICP-MS (Agilent Technologies). The accuracy, precision, linearity and the limit of quantification (LOQ), Limit of Blank (LOB) and the limit of detection (LOD) of the method were assessed. Recovery rates were between 80-130% for most of the analyzed elements; repeatabilities (Cv %) calculated were below 15% for most of the measured elements. The validity of the proposed methodology was assessed by analyzing a certified human serum and whole blood material with known concentrations for all elements; the method described is ready for routine use in biomonitoring studies.


Assuntos
Espectrofotometria Atômica/métodos , Espectrometria de Massas em Tandem/métodos , Oligoelementos/sangue , Cálcio/sangue , Cromo/sangue , Cobre/sangue , Ouro/sangue , Humanos , Ferro/sangue , Limite de Detecção , Lítio/sangue , Magnésio/sangue , Manganês/sangue , Níquel/sangue , Potássio/sangue , Selênio/sangue , Sódio/sangue , Zinco/sangue
15.
Sci Rep ; 8(1): 5628, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618771

RESUMO

Aptamer-based lateral flow assays (LFAs) are an emerging field of aptamer applications due to numerous potential applications. When compared to antibodies, potential advantages like cost effectiveness or lower batch to batch variations are evident. The development of LFAs for small molecules, however, is still challenging due to several reasons, primarily linked to target size and accessible interaction sites. In small molecule analysis, however, aptamers in many cases are preferable since immunogenicity is not required and they may exhibit even higher target selectivity. We report the first cross-recognition of a small molecule (ampicillin) and a protein (C-reactive protein), predicted by in-silico analysis, then experimentally confirmed - using two different aptamers. These features can be exploited for developing an aptamer-based LFA for label-free ampicillin detection, functioning also for analysis in milk extract. Most importantly, the principal setup denotes a novel, transferable and versatile general approach for detection of small molecules using competitive LFAs, unlikely to be generally realized by aptamer-DNA-binding otherwise.


Assuntos
Ampicilina/análise , Aptâmeros de Nucleotídeos/química , Proteína C-Reativa/química , Imunoensaio/métodos , Bibliotecas de Moléculas Pequenas/análise , Ampicilina/imunologia , Animais , Proteína C-Reativa/metabolismo , Bovinos , Ouro/química , Nanopartículas Metálicas/química , Leite/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa