Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 37(9): e23129, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37606578

RESUMO

During peritoneal dialysis (PD), the peritoneum is exposed to a bioincompatible dialysate, deteriorating the tissue and limiting the long-term effectiveness of PD. Peritoneal fibrosis is triggered by chronic inflammation induced by a variety of stimuli, including peritonitis. Exposure to PD fluid alters peritoneal macrophages phenotype. Inflammasome activation triggers chronic inflammation. First, it was determined whether inflammasome activation causes peritoneal deterioration. In the in vivo experiments, the increased expression of the inflammasome components, caspase-1 activity, and concomitant overproduction of IL-1ß and IL-18 were observed in a mouse model of peritoneal fibrosis. ASC-positive and F4/80-positive cells colocalized in the subperitoneal mesothelial cell layer. These macrophages expressed high CD44 levels indicating that the CD44-positive macrophages contribute to developing peritoneal deterioration. Furthermore, intravital imaging of the peritoneal microvasculature demonstrated that the circulating CD44-positive leukocytes may contribute to peritoneal fibrosis. Bone marrow transplantation in ASC-deficient mice suppressed inflammasome activation, thereby attenuating peritoneal fibrosis in a high glucose-based PD solution-injected mouse model. Our results suggest inflammasome activation in CD44-positive macrophages may be involved in developing peritoneal fibrosis. The inflammasome-derived pro-inflammatory cytokines might therefore serve as new biomarkers for developing encapsulating peritoneal sclerosis.


Assuntos
Fibrose Peritoneal , Peritonite , Animais , Camundongos , Peritônio , Inflamassomos , Modelos Animais de Doenças , Inflamação
2.
Chem Phys Lipids ; 163(4-5): 397-402, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20346931

RESUMO

Slight differences in the molecular structures of a category of sterol/stanol species affect the solubility of cholesterol in a bile salt solution. We systematically studied the preferential solubilization of cholesterol and sterol/stanol in sodium taurodeoxycholate solutions using relatively minor plant species of sterol/stanol (brassicasterol and stigmasterol) and a non-plant sterol (cholestanol). As relatively major sterol/stanol species (beta-sitosterol, beta-sitostanol, and campesterol) have already been examined using nearly identical procedures to that used in our system, we were able to sufficiently discuss the cholesterol-lowering effects resulting from the molecular structures of six sterol/stanol species. The results of competitive solubilization revealed that cholestanol has the largest cholesterol-lowering effect, decreasing cholesterol solubility to 33% of that in a single solubilizate system. The molecular structure of cholestanol is also most similar to that of cholesterol. In contrast, brassicasterol and stigmasterol have little ability to decrease cholesterol solubility in a mixed binary system. Both have an unsaturated double bond at the side chain of the steroid ring. By applying thermodynamic analyses to these results, we found that the Gibbs energy changes (DeltaG degrees ) of solubilization for sterol/stanol species with cholesterol-lowering effects show larger negative values than that for cholesterol.


Assuntos
Ácidos e Sais Biliares/química , Colesterol/química , Esteróis/química , Micelas , Solubilidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa