Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(6): e2313887121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38294939

RESUMO

Neurotransmitter receptors are essential components of synapses for communication between neurons in the brain. Because the spatiotemporal expression profiles and dynamics of neurotransmitter receptors involved in many functions are delicately governed in the brain, in vivo research tools with high spatiotemporal resolution for receptors in intact brains are highly desirable. Covalent labeling by chemical reaction (chemical labeling) of proteins without genetic manipulation is now a powerful method for analyzing receptors in vitro. However, selective target receptor labeling in the brain has not yet been achieved. This study shows that ligand-directed alkoxyacylimidazole (LDAI) chemistry can be used to selectively tether synthetic probes to target endogenous receptors in living mouse brains. The reactive LDAI reagents with negative charges were found to diffuse well over the whole brain and could selectively label target endogenous receptors, including AMPAR, NMDAR, mGlu1, and GABAAR. This simple and robust labeling protocol was then used for various applications: three-dimensional spatial mapping of endogenous receptors in the brains of healthy and disease-model mice; multi-color receptor imaging; and pulse-chase analysis of the receptor dynamics in postnatal mouse brains. Here, results demonstrated that bioorthogonal receptor modification in living animal brains may provide innovative molecular tools that contribute to the in-depth understanding of complicated brain functions.


Assuntos
Neurônios , Proteínas , Camundongos , Animais , Indicadores e Reagentes , Ligantes , Encéfalo
2.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069416

RESUMO

Mammalian auditory hair cells transduce sound-evoked traveling waves in the cochlea into nerve stimuli, which are essential for hearing function. Pillar cells located between the inner and outer hair cells are involved in the formation of the tunnel of Corti, which incorporates outer-hair-cell-driven fluid oscillation and basilar membrane movement, leading to the fine-tuned frequency-specific perception of sounds by the inner hair cells. However, the detailed molecular mechanism underlying the development and maintenance of pillar cells remains to be elucidated. In this study, we examined the expression and function of brain-specific angiogenesis inhibitor 3 (Bai3), an adhesion G-protein-coupled receptor, in the cochlea. We found that Bai3 was expressed in hair cells in neonatal mice and pillar cells in adult mice, and, interestingly, Bai3 knockout mice revealed the abnormal formation of pillar cells, with the elevation of the hearing threshold in a frequency-dependent manner. Furthermore, old Bai3 knockout mice showed the degeneration of hair cells and spiral ganglion neurons in the basal turn. The results suggest that Bai3 plays a crucial role in the development and/or maintenance of pillar cells, which, in turn, are necessary for normal hearing function. Our results may contribute to understanding the mechanisms of hearing loss in human patients.


Assuntos
Cóclea , Audição , Proteínas de Membrana , Proteínas do Tecido Nervoso , Animais , Camundongos , Encéfalo , Cóclea/metabolismo , Células Ciliadas Auditivas Externas , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas de Membrana/genética
3.
J Physiol ; 597(3): 903-920, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30382582

RESUMO

KEY POINTS: NMDA receptors (NMDARs) are required for long-term depression (LTD) at parallel fibre-Purkinje cell synapses, but their cellular localization and physiological functions in vivo are unclear. NMDARs in molecular-layer interneurons (MLIs), but not granule cells or Purkinje cells, are required for LTD, but not long-term potentiation induced by low-frequency stimulation of parallel fibres. Nitric oxide produced by NMDAR activation in MLIs probably mediates LTD induction. NMDARs in granule cells or Purkinje cells are dispensable for motor learning during adaptation of horizontal optokinetic responses. ABSTRACT: Long-term potentiation (LTP) and depression (LTD), which serve as cellular synaptic plasticity models for learning and memory, are crucially regulated by N-methyl-d-aspartate receptors (NMDARs) in various brain regions. In the cerebellum, LTP and LTD at parallel fibre (PF)-Purkinje cell (PC) synapses are thought to mediate certain forms of motor learning. However, while NMDARs are essential for LTD in vitro, their cellular localization remains controversial. In addition, whether and how NMDARs mediate motor learning in vivo remains unclear. Here, we examined the contribution of NMDARs expressed in granule cells (GCs), PCs and molecular-layer interneurons (MLIs) to LTD/LTP and motor learning by generating GC-, PC- and MLI/PC-specific knockouts of Grin1, a gene encoding an obligatory GluN1 subunit of NMDARs. While robust LTD and LTP were induced at PF-PC synapses in GC- and PC-specific Grin1 (GC-Grin1 and PC-Grin1, respectively) conditional knockout (cKO) mice, only LTD was impaired in MLI/PC-specific Grin1 (MLI/PC-Grin1) cKO mice. Application of diethylamine nitric oxide (NO) sodium, a potent NO donor, to the cerebellar slices restored LTD in MLI/PC-Grin1 cKO mice, suggesting that NO is probably downstream to NMDARs. Furthermore, the adaptation of horizontal optokinetic responses (hOKR), a cerebellar motor learning task, was normally observed in GC-Grin1 cKO and PC-Grin1 cKO mice, but not in MLI/PC-Grin1 cKO mice. These results indicate that it is the NMDARs expressed in MLIs, but not in PCs or GCs, that play important roles in LTD in vitro and motor learning in vivo.


Assuntos
Cerebelo/metabolismo , Depressão/metabolismo , Interneurônios/metabolismo , Aprendizagem/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Cerebelo/fisiopatologia , Depressão/fisiopatologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Camundongos , Camundongos Transgênicos , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Células de Purkinje/metabolismo , Células de Purkinje/fisiologia , Sinapses/metabolismo
4.
J Neurochem ; 150(3): 249-263, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31188471

RESUMO

Hyaluronan is synthesized, secreted, and anchored by hyaluronan synthases (HAS) at the plasma membrane and comprises the backbone of perineuronal nets around neuronal soma and dendrites. However, the molecular targets of hyaluronan to regulate synaptic transmission in the central nervous system have not been fully identified. Here, we report that hyaluronan is a negative regulator of excitatory signals. At excitatory synapses, glutamate is removed by glutamate transporters to turn off the signal and prevent excitotoxicity. Hyaluronan synthesized by HAS supports the activity of glial glutamate transporter 1 (GLT1). GLT1 also retracted from cellular processes of cultured astrocytes after hyaluronidase treatment and hyaluronan synthesis inhibition. A serial knockout study showed that all three HAS subtypes recruit GLT1 to cellular processes. Furthermore, hyaluronidase treatment activated neurons in a dissociated rat hippocampal culture and caused neuronal damage due to excitotoxicity. Our findings reveal that hyaluronan helps to turn off excitatory signals by supporting glutamate clearance. Cover Image for this issue: doi: 10.1111/jnc.14516.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Encéfalo/metabolismo , Ácido Hialurônico/biossíntese , Transmissão Sináptica/fisiologia , Animais , Astrócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
5.
J Neurosci ; 35(36): 12518-34, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26354918

RESUMO

The establishment of cell-type-specific dendritic arbors is fundamental for proper neural circuit formation. Here, using temporal- and cell-specific knock-down, knock-out, and overexpression approaches, we show that multiple aspects of the dendritic organization of cerebellar Purkinje cells (PCs) are controlled by a single transcriptional factor, retinoic acid-related orphan receptor-alpha (RORα), a gene defective in staggerer mutant mice. As reported earlier, RORα was required for regression of primitive dendrites before postnatal day 4 (P4). RORα was also necessary for PCs to form a single Purkinje layer from P0 to P4. The knock-down of RORα from P4 impaired the elimination of perisomatic dendrites and maturation of single stem dendrites in PCs at P8. Filopodia and spines were also absent in these PCs. The knock-down of RORα from P8 impaired the formation and maintenance of terminal dendritic branches of PCs at P14. Finally, even after dendrite formation was completed at P21, RORα was required for PCs to maintain dendritic complexity and functional synapses, but their mature innervation pattern by single climbing fibers was unaffected. Interestingly, overexpression of RORα in PCs at various developmental stages did not facilitate dendrite development, but had specific detrimental effects on PCs. Because RORα deficiency during development is closely related to the severity of spinocerebellar ataxia type 1, delineating the specific roles of RORα in PCs in vivo at different time windows during development and throughout adulthood would facilitate our understanding of the pathogenesis of cerebellar disorders. Significance statement: The genetic programs by which each neuron subtype develops and maintains dendritic arbors have remained largely unclear. This is partly because dendrite development is modulated dynamically by neuronal activities and interactions with local environmental cues in vivo. In addition, dendrites are formed and maintained by the balance between their growth and regression; the effects caused by the disruption of transcription factors during the early developmental stages could be masked by dendritic growth or regression in the later stages. Here, using temporal- and cell-specific knock-down, knock-out, and overexpression approaches in vivo, we show that multiple aspects of the dendritic organization of cerebellar Purkinje cells are controlled by a single transcriptional factor, retinoic acid-related orphan receptor alpha.


Assuntos
Dendritos/metabolismo , Neurogênese , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Células de Purkinje/metabolismo , Animais , Dendritos/fisiologia , Camundongos , Camundongos Endogâmicos ICR , Camundongos Mutantes Neurológicos , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Células de Purkinje/citologia
6.
Proc Natl Acad Sci U S A ; 110(10): E948-57, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23431139

RESUMO

Long-term depression (LTD) commonly affects learning and memory in various brain regions. Although cerebellar LTD absolutely requires the δ2 glutamate receptor (GluD2) that is expressed in Purkinje cells, LTD in other brain regions does not; why and how cerebellar LTD is regulated by GluD2 remains unelucidated. Here, we show that the activity-dependent phosphorylation of serine 880 (S880) in GluA2 AMPA receptor subunit, which is an essential step for AMPA receptor endocytosis during LTD induction, was impaired in GluD2-null cerebellum. In contrast, the basal phosphorylation levels of tyrosine 876 (Y876) in GluA2 were increased in GluD2-null cerebellum. An in vitro phosphorylation assay revealed that Y876 phosphorylation inhibited subsequent S880 phosphorylation. Conversely, Y876 dephosphorylation was sufficient to restore S880 phosphorylation and LTD induction in GluD2-null Purkinje cells. Furthermore, megakaryocyte protein tyrosine phosphatase (PTPMEG), which binds to the C terminus of GluD2, directly dephosphorylated Y876. These data indicate that GluD2 gates LTD by coordinating interactions between the two phosphorylation sites of the GluA2.


Assuntos
Depressão Sináptica de Longo Prazo/fisiologia , Receptores de AMPA/fisiologia , Receptores de Glutamato/fisiologia , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/fisiologia , Animais , Cerebelo/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Camundongos , Camundongos Knockout , Modelos Neurológicos , Plasticidade Neuronal/fisiologia , Técnicas de Patch-Clamp , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas , Proteína Tirosina Fosfatase não Receptora Tipo 4/fisiologia , Células de Purkinje/fisiologia , Receptores de AMPA/química , Receptores de AMPA/genética , Receptores de Glutamato/química , Receptores de Glutamato/deficiência , Receptores de Glutamato/genética , Serina/química , Transdução de Sinais , Tirosina/química
7.
J Neurosci ; 33(44): 17326-34, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24174665

RESUMO

Ca(2+)-dependent activator protein for secretion 1 (CAPS1) plays a regulatory role in the dense-core vesicle (DCV) exocytosis pathway, but its functions at the cellular and synaptic levels in the brain are essentially unknown because of neonatal death soon after birth in Caps1 knock-out mice. To clarify the functions of the protein in the brain, we generated two conditional knock-out (cKO) mouse lines: 1) one lacking Caps1 in the forebrain; and 2) the other lacking Caps1 in the cerebellum. Both cKO mouse lines were born normally and grew to adulthood, although they showed subcellular and synaptic abnormalities. Forebrain-specific Caps1 cKO mice showed reduced immunoreactivity for the DCV marker secretogranin II (SgII) and the trans-Golgi network (TGN) marker syntaxin 6, a reduced number of presynaptic DCVs, and dilated trans-Golgi cisternae in the CA3 region. Cerebellum-specific Caps1 cKO mice had decreased immunoreactivity for SgII and brain-derived neurotrophic factor (BDNF) along the climbing fibers. At climbing fiber-Purkinje cell synapses, the number of DCVs was markedly lower and the number of synaptic vesicles was also reduced. Correspondingly, the mean amplitude of EPSCs was decreased, whereas paired-pulse depression was significantly increased. Our results suggest that loss of CAPS1 disrupts the TGN-DCV pathway, which possibly impairs synaptic transmission by reducing the presynaptic release probability.


Assuntos
Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/deficiência , Complexo de Golgi/metabolismo , Proteínas do Tecido Nervoso/deficiência , Terminações Pré-Sinápticas/metabolismo , Vesículas Secretórias/metabolismo , Animais , Encéfalo/ultraestrutura , Complexo de Golgi/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Terminações Pré-Sinápticas/ultraestrutura , Probabilidade , Transporte Proteico/genética , Vesículas Secretórias/ultraestrutura
8.
Eur J Neurosci ; 39(8): 1268-80, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24467251

RESUMO

The formation of excitatory and inhibitory synapses must be tightly coordinated to establish functional neuronal circuitry during development. In the cerebellum, the formation of excitatory synapses between parallel fibers and Purkinje cells is strongly induced by Cbln1, which is released from parallel fibers and binds to the postsynaptic δ2 glutamate receptor (GluD2). However, Cbln1's role, if any, in inhibitory synapse formation has been unknown. Here, we show that Cbln1 downregulates the formation and function of inhibitory synapses between Purkinje cells and interneurons. Immunohistochemical analyses with an anti-vesicular GABA transporter antibody revealed an increased density of interneuron-Purkinje cell synapses in the cbln1-null cerebellum. Whole-cell patch-clamp recordings from Purkinje cells showed that both the amplitude and frequency of miniature inhibitory postsynaptic currents were increased in cbln1-null cerebellar slices. A 3-h incubation with recombinant Cbln1 reversed the increased amplitude of inhibitory currents in Purkinje cells in acutely prepared cbln1-null slices. Furthermore, an 8-day incubation with recombinant Cbln1 reversed the increased interneuron-Purkinje cell synapse density in cultured cbln1-null slices. In contrast, recombinant Cbln1 did not affect cerebellar slices from mice lacking both Cbln1 and GluD2. Finally, we found that tyrosine phosphorylation was upregulated in the cbln1-null cerebellum, and acute inhibition of Src-family kinases suppressed the increased inhibitory postsynaptic currents in cbln1-null Purkinje cells. These findings indicate that Cbln1-GluD2 signaling inhibits the number and function of inhibitory synapses, and shifts the excitatory-inhibitory balance towards excitation in Purkinje cells. Cbln1's effect on inhibitory synaptic transmission is probably mediated by a tyrosine kinase pathway.


Assuntos
Potenciais Pós-Sinápticos Inibidores , Proteínas do Tecido Nervoso/metabolismo , Precursores de Proteínas/metabolismo , Células de Purkinje/metabolismo , Sinapses/metabolismo , Animais , Regulação para Baixo , Interneurônios/metabolismo , Interneurônios/fisiologia , Camundongos , Potenciais Pós-Sinápticos em Miniatura , Proteínas do Tecido Nervoso/genética , Neurogênese , Precursores de Proteínas/genética , Células de Purkinje/citologia , Células de Purkinje/fisiologia , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Sinapses/fisiologia , Quinases da Família src/metabolismo
9.
Cell Rep ; : 114427, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38986610

RESUMO

Kainate (KA)-type glutamate receptors (KARs) are implicated in various neuropsychiatric and neurological disorders through their ionotropic and metabotropic actions. However, compared to AMPA- and NMDA-type receptor functions, many aspects of KAR biology remain incompletely understood. Our study demonstrates an important role of KARs in organizing climbing fiber (CF)-Purkinje cell (PC) synapses and synaptic plasticity in the cerebellum, independently of their ion channel or metabotropic functions. The amino-terminal domain (ATD) of the GluK4 KAR subunit binds to C1ql1, provided by CFs, and associates with Bai3, an adhesion-type G protein-coupled receptor expressed in PC dendrites. Mice lacking GluK4 exhibit no KAR-mediated responses, reduced C1ql1 and Bai3 levels, and fewer CF-PC synapses, along with impaired long-term depression and oculomotor learning. Remarkably, introduction of the ATD of GluK4 significantly improves all these phenotypes. These findings demonstrate that KARs act as synaptic scaffolds, orchestrating synapses by forming a KAR-C1ql1-Bai3 complex in the cerebellum.

10.
Nat Commun ; 15(1): 458, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302444

RESUMO

In the central nervous system, astrocytes enable appropriate synapse function through glutamate clearance from the synaptic cleft; however, it remains unclear how astrocytic glutamate transporters function at peri-synaptic contact. Here, we report that Down syndrome cell adhesion molecule (DSCAM) in Purkinje cells controls synapse formation and function in the developing cerebellum. Dscam-mutant mice show defects in CF synapse translocation as is observed in loss of function mutations in the astrocytic glutamate transporter GLAST expressed in Bergmann glia. These mice show impaired glutamate clearance and the delocalization of GLAST away from the cleft of parallel fibre (PF) synapse. GLAST complexes with the extracellular domain of DSCAM. Riluzole, as an activator of GLAST-mediated uptake, rescues the proximal impairment in CF synapse formation in Purkinje cell-selective Dscam-deficient mice. DSCAM is required for motor learning, but not gross motor coordination. In conclusion, the intercellular association of synaptic and astrocyte proteins is important for synapse formation and function in neural transmission.


Assuntos
Neuroglia , Neurônios , Animais , Camundongos , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Cerebelo/metabolismo , Ácido Glutâmico/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Células de Purkinje/metabolismo , Sinapses/metabolismo
11.
Chem ; 9(2): 523-540, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38094901

RESUMO

Various small molecules have been used as functional probes for tissue imaging in medical diagnosis and pharmaceutical drugs for disease treatment. The spatial distribution, target selectivity, and diffusion/excretion kinetics of small molecules in structurally complicated specimens are critical for function. However, robust methods for precisely evaluating these parameters in the brain have been limited. Herein, we report a new method termed "fixation-driven chemical cross-linking of exogenous ligands (FixEL)," which traps and images exogenously administered molecules of interest (MOIs) in complex tissues. This method relies on protein-MOI interactions and chemical cross-linking of amine-tethered MOI with paraformaldehyde used for perfusion fixation. FixEL is used to obtain images of the distribution of the small molecules, which addresses selective/nonselective binding to proteins, time-dependent localization changes, and diffusion/retention kinetics of MOIs such as the scaffold of PET tracer derivatives or drug-like small molecules.

12.
Eur J Neurosci ; 36(7): 2867-76, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22775058

RESUMO

Cerebellar Purkinje cells, which convey the only output from the cerebellar cortex, play an essential role in cerebellar functions, such as motor coordination and motor learning. To understand how Purkinje cells develop and function in the mature cerebellum, an efficient method for molecularly perturbing them is needed. Here we demonstrate that Purkinje cell progenitors at embryonic day (E)11.5 could be efficiently and preferentially transfected by spatially directed in utero electroporation (IUE) with an optimized arrangement of electrodes. Electrophysiological analyses indicated that the electroporated Purkinje cells maintained normal membrane properties, synaptic responses and synaptic plasticity at postnatal days 25-28. By combining the L7 promoter and inducible Cre/loxP system with IUE, transgenes were expressed even more specifically in Purkinje cells and in a temporally controlled manner. We also show that three different fluorescent proteins could be simultaneously expressed, and that Bassoon, a large synaptic protein, could be expressed in the electroporated Purkinje cells. Moreover, phenotypes of staggerer mutant mice, which have a deletion in the gene encoding retinoid-related orphan receptor α (RORα1), were recapitulated by electroporating a dominant-negative form of RORα1 into Purkinje cells at E11.5. Together, these results indicate that this new IUE protocol, which allows the selective, effective and temporally regulated expression of multiple foreign genes transfected into Purkinje cell progenitors in vivo, without changing the cells' physiological characteristics, is a powerful tool for elucidating the molecular mechanisms underlying early Purkinje cell developmental events, such as dendritogenesis and migration, and synaptic plasticity in mature Purkinje cells.


Assuntos
Eletroporação/métodos , Regulação da Expressão Gênica no Desenvolvimento , Células de Purkinje/metabolismo , Animais , Células-Tronco Embrionárias/metabolismo , Feminino , Vetores Genéticos/genética , Potenciais da Membrana/genética , Camundongos , Camundongos Mutantes Neurológicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Gravidez , Regiões Promotoras Genéticas/genética , Células de Purkinje/fisiologia , Transmissão Sináptica/genética , Transfecção , Transgenes/genética
13.
Eur J Neurosci ; 35(3): 402-10, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22239345

RESUMO

Cerebellar long-term depression (LTD) at parallel fiber (PF)-Purkinje cell synapses is thought to play an essential role in certain forms of motor learning. Like hippocampal LTD, cerebellar LTD is mediated by the endocytosis of AMPA (α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate) receptors at postsynaptic sites. However, similar sets of kinases and phosphatases have opposite regulatory effects on hippocampal and cerebellar LTD, although the mechanisms responsible for this difference remain largely unclear. Activity-dependent dephosphorylation of stargazin (an AMPA receptor auxiliary protein) by calcineurin regulates hippocampal LTD, but whether and how stargazin is involved in cerebellar LTD is unknown. In this study, we showed that stargazin is highly phosphorylated at basal states and is dephosphorylated by the application of high KCl plus glutamate (K-glu) or of a metabotropic glutamate receptor agonist, (S)-3,5-dihydroxyphenylglycine (DHPG), both of which chemically induced LTD in cerebellar slices. This chemically induced dephosphorylation of stargazin was specifically blocked by a calcineurin inhibitor. Indeed, inclusion of the calcineurin auto-inhibitory peptide in the patch pipette solution completely inhibited the LTD induced by the conjunctive stimulation of PFs and Purkinje cells. Furthermore, in Purkinje cells expressing stargazin-9D, in which all nine serine residues are mutated to aspartate, neither conjunctive stimulus nor DHPG treatment induced LTD. Finally, immunohistochemical analyses revealed that neither K-glu nor DHPG induced the endocytosis of AMPA receptors in Purkinje cells expressing stargazin-9D. Together, these results indicate that hippocampal and cerebellar LTD share a common pathway, namely dephosphorylation of stargazin by calcineurin.


Assuntos
Canais de Cálcio/metabolismo , Cerebelo/citologia , Cerebelo/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Células de Purkinje/fisiologia , Calcineurina/metabolismo , Canais de Cálcio/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Técnicas de Patch-Clamp , Fosforilação , Receptores de AMPA/metabolismo
14.
Nat Commun ; 13(1): 3167, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710788

RESUMO

Direct activation of cell-surface receptors is highly desirable for elucidating their physiological roles. A potential approach for cell-type-specific activation of a receptor subtype is chemogenetics, in which both point mutagenesis of the receptors and designed ligands are used. However, ligand-binding properties are affected in most cases. Here, we developed a chemogenetic method for direct activation of metabotropic glutamate receptor 1 (mGlu1), which plays essential roles in cerebellar functions in the brain. Our screening identified a mGlu1 mutant, mGlu1(N264H), that was activated directly by palladium complexes. A palladium complex showing low cytotoxicity successfully activated mGlu1 in mGlu1(N264H) knock-in mice, revealing that activation of endogenous mGlu1 is sufficient to evoke the critical cellular mechanism of synaptic plasticity, a basis of motor learning in the cerebellum. Moreover, cell-type-specific activation of mGlu1 was demonstrated successfully using adeno-associated viruses in mice, which shows the potential utility of this chemogenetics for clarifying the physiological roles of mGlu1 in a cell-type-specific manner.


Assuntos
Cerebelo , Paládio , Animais , Encéfalo , Camundongos , Plasticidade Neuronal
15.
J Neurosci ; 30(6): 2177-87, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-20147545

RESUMO

The lurcher (Lc) mice have served as a valuable model for neurodegeneration for decades. Although the responsible mutation was identified in genes encoding delta2 glutamate receptors (GluD2s), which are predominantly expressed in cerebellar Purkinje cells, how the mutant receptor (GluD2(Lc)) triggers cell death has remained elusive. Here, taking advantage of recent knowledge about the domain structure of GluD2, we reinvestigated Lc-mediated cell death, focusing on the "autophagic cell death" hypothesis. Although autophagy and cell death were induced by the expression of GluD2(Lc) in heterologous cells and cultured neurons, they were blocked by the introduction of mutations in the channel pore domain of GluD2(Lc) or by removal of extracellular Na(+). In addition, although GluD2(Lc) is reported to directly activate autophagy, mutant channels that are not associated with n-PIST (neuronal isoform of protein-interacting specifically with TC10)-Beclin1 still caused autophagy and cell death. Furthermore, cells expressing GluD2(Lc) showed decreased ATP levels and increased AMP-activated protein kinase (AMPK) activities in a manner dependent on extracellular Na(+). Thus, constitutive currents were likely necessary and sufficient to induce autophagy via AMPK activation, regardless of the n-PIST-Beclin1 pathway in vitro. Interestingly, the expression of dominant-negative AMPK suppressed GluD2(Lc)-induced autophagy but did not prevent cell death in heterologous cells. Similarly, the disruption of Atg5, a gene crucial for autophagy, did not prevent but rather aggravated Purkinje-cell death in Lc mice. Furthermore, calpains were specifically activated in Lc Purkinje cells. Together, these results suggest that Lc-mediated cell death was not caused by autophagy but necrosis with autophagic features both in vivo and in vitro.


Assuntos
Autofagia , Cálcio/metabolismo , Degeneração Neural/patologia , Neurônios/patologia , Sódio/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Trifosfato de Adenosina/metabolismo , Animais , Proteínas Reguladoras de Apoptose/fisiologia , Proteína 5 Relacionada à Autofagia , Proteína Beclina-1 , Calpaína/metabolismo , Proteínas de Transporte/fisiologia , Cátions , Morte Celular , Células Cultivadas , Ativação Enzimática , Proteínas da Matriz do Complexo de Golgi , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Mutantes Neurológicos , Proteínas Associadas aos Microtúbulos/genética , Degeneração Neural/metabolismo , Neurônios/metabolismo , Células de Purkinje/citologia , Células de Purkinje/metabolismo , Receptores de Glutamato/biossíntese , Receptores de Glutamato/genética
16.
Neurochem Res ; 36(7): 1314-22, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21221776

RESUMO

Mice with spontaneous and induced mutations causing cerebellar phenotypes have provided key insights into how motor-related memories are stored in cerebellar circuits. Delayed eyeblink conditioning is a form of associative motor learning that depends on the cerebellum. However, neurochemical investigation of the underlying mechanisms has been hampered by the long training period (usually several days) required to establish conditioning. Here, we report a new rapid-training protocol that reliably induced delayed eyeblink conditioning within a single day. The associative memory formation depended on the expression of the δ2 glutamate receptor (GluD2) in cerebellar Purkinje cells. It lasted for several weeks, but could be erased by extinction sessions in a single day. In addition, using the rapid protocol, we found that eyeblink conditioning could be induced in juvenile mice at postnatal day 21, and that the Sindbis-virus-mediated expression of GluD2 could rescue the impaired eyeblink conditioning in GluD2-null mice in vivo.


Assuntos
Cerebelo/fisiologia , Condicionamento Palpebral/fisiologia , Receptores de Glutamato/fisiologia , Animais , Cerebelo/citologia , Camundongos , Testes Neuropsicológicos , Células de Purkinje/citologia , Receptores de Glutamato/genética , Fatores de Tempo
17.
Cell Rep ; 35(1): 108932, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33826902

RESUMO

Mutations in the gene encoding the chromatin remodeler chromodomain helicase DNA-binding protein 8 (CHD8) are a highly penetrant risk factor for autism spectrum disorder (ASD). Although cerebellar abnormalities have long been thought to be related to ASD pathogenesis, it has remained largely unknown whether dysfunction of CHD8 in the cerebellum contributes to ASD phenotypes. We here show that cerebellar granule neuron progenitor (GNP)-specific deletion of Chd8 in mice impairs the proliferation and differentiation of these cells as well as gives rise to cerebellar hypoplasia and a motor coordination defect, but not to ASD-like behavioral abnormalities. CHD8 is found to regulate the expression of neuronal genes in GNPs. It also binds preferentially to promoter regions and modulates local chromatin accessibility of transcriptionally active genes in these cells. Our results have thus uncovered a key role for CHD8 in cerebellar development, with important implications for understanding the contribution of this brain region to ASD pathogenesis.


Assuntos
Transtorno Autístico/patologia , Cerebelo/embriologia , Cerebelo/fisiopatologia , Proteínas de Ligação a DNA/metabolismo , Atividade Motora , Animais , Comportamento Animal , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Cerebelo/anormalidades , Cromatina/metabolismo , Proteínas de Ligação a DNA/deficiência , Deficiências do Desenvolvimento , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos Endogâmicos C57BL , Malformações do Sistema Nervoso , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo
18.
J Neurosci ; 29(18): 5738-48, 2009 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-19420242

RESUMO

The delta2 glutamate receptor (GluRdelta2; GluD2), which is predominantly expressed on postsynaptic sites at parallel fiber (PF)-Purkinje cell synapses in the cerebellum, plays two crucial roles in the cerebellum: the formation of PF synapses and the regulation of long-term depression (LTD), a form of synaptic plasticity underlying motor learning. Although the induction of LTD and motor learning absolutely require signaling via the cytoplasmic C-terminal domain of GluD2, the mechanisms by which GluD2 regulates PF synaptogenesis have remained unclear. Here, we examined the role of the extracellular N-terminal domain (NTD) of GluD2 on PF synaptogenesis by injecting Sindbis virus carrying wild-type (GluD2(wt)) or mutant GluD2 into the subarachnoid supracerebellar space of GluD2-null mice. Remarkably, the expression of GluD2(wt), but not of a mutant GluD2 lacking the NTD (GluD2(DeltaNTD)), rapidly induced PF synapse formation and rescued gross motor dyscoordination in adult GluD2-null mice just 1 d after injection. In addition, although the kainate receptor GluR6 (GluK2) did not induce PF synaptogenesis, a chimeric GluK2 that contained the NTD of GluD2 (GluD2(NTD)-GluK2) did. Similarly, GluD2(wt) and GluD2(NTD)-GluK2, but not GluD2(DeltaNTD), induced synaptogenesis in heterologous cells in vitro. In contrast, LTD was restored in GluD2-null Purkinje cells expressing a mutant GluD2 lacking the NTD. These results indicate that the NTD of GluD2 is necessary and sufficient for the function of GluD2 in the regulation of PF-Purkinje cell synaptogenesis. Furthermore, our results suggest that GluD2 differently regulates PF synaptogenesis and cerebellar LTD through the extracellular NTD and the cytoplasmic C-terminal end, respectively.


Assuntos
Cerebelo/citologia , Terminações Pré-Sinápticas/fisiologia , Estrutura Terciária de Proteína/fisiologia , Receptores de Glutamato/química , Sinapses/metabolismo , Sequência de Aminoácidos/genética , Análise de Variância , Animais , Animais Recém-Nascidos , Linhagem Celular Transformada , Cerebelo/fisiologia , Modelos Animais de Doenças , Estimulação Elétrica/métodos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Expressão Gênica/genética , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/genética , Humanos , Depressão Sináptica de Longo Prazo/genética , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Atividade Motora/genética , Transtornos das Habilidades Motoras/genética , Transtornos das Habilidades Motoras/terapia , Mutação/genética , Fibras Nervosas/fisiologia , Plasticidade Neuronal , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/ultraestrutura , Estrutura Terciária de Proteína/genética , Transporte Proteico/genética , Células de Purkinje/citologia , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/ultraestrutura , Receptores de Glutamato/deficiência , Receptores de Glutamato/genética , Recrutamento Neurofisiológico , Sindbis virus/fisiologia , Sinapses/efeitos dos fármacos , Sinapses/genética , Sinapses/ultraestrutura , Transfecção/métodos , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
19.
Science ; 369(6507)2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32855309

RESUMO

Neuronal synapses undergo structural and functional changes throughout life, which are essential for nervous system physiology. However, these changes may also perturb the excitatory-inhibitory neurotransmission balance and trigger neuropsychiatric and neurological disorders. Molecular tools to restore this balance are highly desirable. Here, we designed and characterized CPTX, a synthetic synaptic organizer combining structural elements from cerebellin-1 and neuronal pentraxin-1. CPTX can interact with presynaptic neurexins and postsynaptic AMPA-type ionotropic glutamate receptors and induced the formation of excitatory synapses both in vitro and in vivo. CPTX restored synaptic functions, motor coordination, spatial and contextual memories, and locomotion in mouse models for cerebellar ataxia, Alzheimer's disease, and spinal cord injury, respectively. Thus, CPTX represents a prototype for structure-guided biologics that can efficiently repair or remodel neuronal circuits.


Assuntos
Proteína C-Reativa/farmacologia , Proteínas do Tecido Nervoso/farmacologia , Vias Neurais/efeitos dos fármacos , Precursores de Proteínas/farmacologia , Receptores de AMPA/metabolismo , Proteínas Recombinantes/farmacologia , Sinapses/efeitos dos fármacos , Doença de Alzheimer/terapia , Animais , Proteína C-Reativa/química , Proteína C-Reativa/uso terapêutico , Ataxia Cerebelar/terapia , Modelos Animais de Doenças , Células HEK293 , Hipocampo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/uso terapêutico , Domínios Proteicos , Precursores de Proteínas/química , Precursores de Proteínas/uso terapêutico , Receptores de Glutamato/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/uso terapêutico , Coluna Vertebral/efeitos dos fármacos , Coluna Vertebral/fisiologia
20.
J Neurosci ; 28(6): 1460-8, 2008 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-18256267

RESUMO

The delta2 glutamate receptor (GluRdelta2) is predominantly expressed in Purkinje cells and plays crucial roles in cerebellar functions: GluRdelta2-/- mice display ataxia and impaired motor learning. In addition, long-term depression (LTD) at parallel fiber (PF)-Purkinje cell synapses is abrogated, and synapse formation with PFs and climbing fibers (CFs) is severely disturbed in GluRdelta2-/- Purkinje cells. Recently, we demonstrated that abrogated LTD was restored in GluRdelta2-/- Purkinje cells by the virus-mediated expression of the wild-type GluRdelta2 transgene (Tg(wt)) but not by that of mutant GluRdelta2 lacking the C-terminal seven residues to which several PDZ proteins bind (Tg(DeltaCT7)). These results indicated that the C terminus of GluRdelta2 conveys the signal(s) necessary for LTD. In contrast, other phenotypes of GluRdelta2-/- cerebellum, especially morphological abnormalities at PF and CF synapses, could not be rescued by virus-mediated transient expression. Thus, whether these phenotypes are mediated by the same signaling pathway remains unclear. To address these issues and to further delineate the function of GluRdelta2 in vivo, we generated transgenic mice that expressed Tg(DeltaCT7) on a GluRdelta2-/- background. Interestingly, although Tg(DeltaCT7) restored abnormal PF and CF synapse formation almost completely, it could not rescue abrogated LTD in GluRdelta2-/- Purkinje cells. Furthermore, although the gross motor discoordination of GluRdelta2-/- mice was restored, the cerebellar motor learning underlying delayed eyeblink conditioning remained impaired. These results indicate that LTD induction and motor learning are regulated by signaling via the C-terminal end of GluRdelta2, whereas other functions may be differentially regulated by other regions of GluRdelta2.


Assuntos
Aprendizagem/fisiologia , Destreza Motora/fisiologia , Plasticidade Neuronal/fisiologia , Domínios PDZ/fisiologia , Fragmentos de Peptídeos/fisiologia , Receptores de Glutamato/fisiologia , Sinapses/metabolismo , Animais , Cerebelo/fisiologia , Potenciais Pós-Sinápticos Excitadores/genética , Depressão Sináptica de Longo Prazo/genética , Masculino , Camundongos , Camundongos Transgênicos , Domínios PDZ/genética , Fragmentos de Peptídeos/biossíntese , Fragmentos de Peptídeos/genética , Ligação Proteica/genética , Receptores de Glutamato/biossíntese , Receptores de Glutamato/genética , Sinapses/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa