RESUMO
Lithophyllum species in the Mediterranean Sea function as algal bioconstructors, contributing to the formation of biogenic habitats such as coralligenous concretions. In such habitats, thalli of Lithophyllum, consisting of crusts or lamellae with entire or lobed margins, have been variously referred to as either one species, L. stictiforme, or two species, L. stictiforme and L. cabiochiae, in the recent literature. We investigated species diversity and phylogenetic relationships in these algae by sequencing three markers (psbA and rbcL genes, cox2,3 spacer), in conjunction with methods for algorithmic delimitation of species (ABGD and GMYC). Mediterranean subtidal Lithophyllum belong to a well-supported lineage, hereby called the L. stictiforme complex, which also includes two species described from the Atlantic, L. lobatum and L. searlesii. Our results indicate that the L. stictiforme complex consists of at least 13 species. Among the Mediterranean species, some are widely distributed and span most of the western and central Mediterranean, whereas others appear to be restricted to specific localities. These patterns are interpreted as possibly resulting from allopatric speciation events that took place during the Messinian Salinity Crisis and subsequent glacial periods. A partial rbcL sequence from the lectotype of L. stictiforme unambiguously indicates that this name applies to the most common subtidal Lithophyllum in the central Mediterranean. We agree with recent treatments that considered L. cabiochiae and L. stictiforme conspecific. The diversity of Lithophyllum in Mediterranean coralligenous habitats has been substantially underestimated, and future work on these and other Mediterranean corallines should use identifications based on DNA sequences.
Assuntos
Rodófitas , Ecossistema , Mar Mediterrâneo , Filogenia , Salinidade , Análise de Sequência de DNARESUMO
Lithophyllum byssoides is a common coralline alga in the intertidal zone of Mediterranean coasts, where it produces biogenic concretions housing a high algal and invertebrate biodiversity. This species is an ecosystem engineer and is considered a target for conservation efforts, but designing effective conservation strategies currently is impossible due to lack of information about its population structure. The morphological and molecular variation of L. byssoides was investigated using morphoanatomy and DNA sequences (psbA and cox2,3) obtained from populations at 15 localities on the Italian and Croatian coasts. Lithophyllum byssoides exhibited a high number of haplotypes (31 psbA haplotypes and 24 cox2,3 haplotypes) in the central Mediterranean. The psbA and cox2,3 phylogenies were congruent and showed seven lineages. For most of these clades, the distribution was limited to one or a few localities, but one of them (clade 7) was widespread across the central Mediterranean, spanning the main biogeographic boundaries recognized in this area. The central Mediterranean populations formed a lineage separate from Atlantic samples; psbA pair-wise divergences suggested that recognition of Atlantic and Mediterranean L. byssoides as different species may be appropriate. The central Mediterranean haplotype patterns of L. byssoides were interpreted as resulting from past climatic events in the hydrogeological history of the Mediterranean Sea. The high haplotype diversity and the restricted spatial distribution of the seven lineages suggest that individual populations should be managed as independent units.
Assuntos
Variação Genética , Rodófitas/genética , Rodófitas/ultraestrutura , Proteínas de Algas/genética , Itália , Microscopia Eletrônica de Varredura , Filogenia , Análise de Sequência de DNARESUMO
Marine macroalgal forests are facing unprecedented challenges worldwide due to the accelerating impacts of climate change. These ecosystems play a crucial role in supporting biodiversity, coastal ecosystem functions and services, and are indeed object of several conservation and restoration measures. The Mediterranean Sea is warming faster than the oceans and thermal anomalies are occurring with increasing intensity, frequency and duration. Along the Mediterranean coasts, Cystoseira sensu lato species are the main representatives of macroalgal forests and their decline has been widely documented. Some relevant achievements in the implementation of ecological restoration have been obtained, but rising temperatures and the occurrence of thermal anomalies increasingly threaten the success of these restoration attempts. In the summer of 2022, ex-situ restoration actions of Ericaria amentacea were carried out by collecting fertile material from three donor sites of the Italian coasts along a latitudinal gradient, during the period of sexual maturity (June/July). Noteworthy during the summer of 2022, anomalous thermal conditions were recorded at the donor sites, with sea surface temperatures exceeding the climatological mean up to 4.3 °C and heatwaves lasting up to 78 days. Our results suggest that these thermal anomalies may have affected the culture of the embryos in both the pre- and post-zygotic phases, resulting in significantly low culture efficiency at the three donor sites. The reproductive structures showed some abnormalities, fertilization of eggs was lower and embryo growth was slower, resulting in lower percent cover of seedlings on the tiles and lower survival rate. The observations underscore the vulnerability of Mediterranean algal forests to global change and highlight additional challenges for their restoration due to the increasing frequency and severity of thermal anomalies, emphasizing the need for adaptive strategies and a comprehensive understanding of the species in a changing climate. Marine forest restoration requires long lasting projects, to allow for long-term monitoring and better understanding the biology of the species and for mitigating stochastic events that can cause the temporary failure of efforts.
Assuntos
Mudança Climática , Mar Mediterrâneo , Temperatura , Ecossistema , Florestas , Conservação dos Recursos Naturais , Alga Marinha/fisiologia , Ericaceae/fisiologia , Recuperação e Remediação Ambiental , ItáliaRESUMO
Fucus virsoides is an ecologically important canopy-forming brown algae endemic to the Adriatic Sea. Once widespread in marine coastal areas, this species underwent a rapid population decline and is now confined to small residual areas. Although the reasons behind this progressive disappearance are still a matter of debate, F. virsoides may suffer, like other macroalgae, from the potential toxic effects of glyphosate-based herbicides. Here, through a transcriptomic approach, we investigate the molecular basis of the high susceptibility of this species to glyphosate solution, previously observed at the morphological and eco-physiological levels. By simulating runoff event in a factorial experiment, we exposed F. virsoides to glyphosate (Roundup® 2.0), either alone or in association with nutrient enrichment, highlighting significant alterations of gene expression profiles that were already visible after three days of exposure. In particular, glyphosate exposure determined the near-complete expression shutdown of several genes involved in photosynthesis, protein synthesis and stress response molecular pathways. Curiously, these detrimental effects were partially mitigated by nutrient supplementation, which may explain the survival of relict population in confined areas with high nutrient inputs.
Assuntos
Fucus , Herbicidas , Phaeophyceae , Animais , Glicina/análogos & derivados , Glicina/toxicidade , Herbicidas/toxicidade , GlifosatoRESUMO
Rhodolith beds (RBs) are bioconstructions characterized by coralline algae, which provide habitat for several associated species. Mediterranean RBs are usually located in the mesophotic zone (below 40 m), and thus are frequently remote and unexplored. Recently, the importance and vulnerability of these habitats have been recognized by the European Community and more attention has been drawn to their investigation and conservation. This study reports the results of an extensive monitoring program, carried out within the Marine Strategy Framework Directive (2008/56/EC), in six sites off the Campania coast (Italy, Mediterranean Sea). New insights were given into the distribution, cover, vitality (i.e., live/dead rhodolith ratio), structural complexity, and coralline algae composition of RBs. Remotely operated vehicles (ROV) investigations allowed the description of several RBs, and the discovery of a RB with rhodolith cover >65% offshore the Capri Island. Only two sites (Secchitiello and Punta Campanella) showed a very low mean cover of live rhodoliths (<10%); hence, not being classifiable as RBs. The collected rhodoliths were mostly small pralines (~2 cm), spheroidal to ellipsoidal, with growth-forms ranging from encrusting/warty to fruticose/lumpy. Coralline algae identification revealed a high diversity within each bed, with a total of 13 identified taxa. The genus Lithothamnion dominated all sites, and Phymatolithon calcareum and Lithothamnion corallioides, protected by the Habitats Directive (92/43/EEC), were detected in all RBs.
RESUMO
In the Mediterranean Sea, brown algae belonging to the Cystoseira genus play a valuable role as foundation species. Due to evidences of regression/loss of the habitats of these species caused by the interplay of human and climatic disturbances, active restoration measures have been encouraged by EU regulations. In particular, nondestructive restoration techniques, which avoid the depletion of threatened species in donor populations, are strongly recommended. In the framework of the EU project ROCPOP-Life, the first ex situ outplanting experience of Cystoseira amentacea var. stricta has been implemented in the Cinque Terre Marine Protected Area (northwestern Mediterranean). A total of 400 clay tiles, hosting approximately three mm-long germlings of C. amentacea, were fixed to the rocky shore with screws: the tiles were monitored for the next 2 months by photographic sampling, and survival (presence/absence of juveniles on the tiles), cover and growth were assessed. Additional sampling was performed 6 months after tile deployment, after which an unprecedented storm surge severely affected the restoration performance. After 2 months, over 40% of the tiles were covered with Cystoseira juveniles, which reached approximately eight mm in total length. The tiles that survived the storm hosted three to six cm-long juveniles. The high cover (≥25%), assuring moisture and shading, and the appropriate size of the juveniles, to avert micro-grazing, at time of deployment were key to the survival and growth of the outplanted juveniles, increasing the potential for restoration success. Our findings show that outplanting of midlittoral canopy-forming species is a feasible approach for restoration efforts, with particular attention given to the early phases: (i) laboratory culture, (ii) transport, and (iii) juvenile densities. These results are strongly encouraging for the implementation of restoration actions for C. amentacea on a large scale, in light of EU guidelines.
RESUMO
Due to multiple impacts, Cystoseira forests are experiencing a significant decline, which is affecting the ecosystem services they provide. Despite conservation efforts, there is an urgent need to develop best practices and large-scale restoration strategies. To implement restoration actions, we developed an ex situ protocol for the cultivation of Cystoseira. amentacea var. stricta, aimed at reducing the time needed for laboratory culture, thus avoiding prolonged maintenance and minimizing costs. Specifically, we tested the effects of temperature, light and substratum on settlement and growth of early life stages using a factorial experiment. Temperature (20 and 24°C) and photoperiod (15L:9D) were selected to reflect the conditions experienced in the field during the reproductive period. Two light intensities (125 and 250 µmol photons m-2s-1) were selected to mimic the condition experienced in the absence of canopy (i.e. barren-higher light intensity) or in the understory (lower light intensity) during gamete release. The tested substrata were flat polished pebbles and rough clay tiles. The release of gametes and the successive survival and development of embryo and germlings were followed for two weeks. Regardless of the culture conditions, rougher tiles showed higher zygote settlement, but the substrata did not affect the successive development. Zygote mortality after one week averaged 50% and at the end of the second week, embryonic survival was higher under lower light and temperature conditions, which also determined the growth of larger embryos.
Assuntos
Ecossistema , Recuperação e Remediação Ambiental , Phaeophyceae/crescimento & desenvolvimento , Análise de Variância , Recuperação e Remediação Ambiental/métodos , Itália , Luz , Oceanos e Mares , Fotoperíodo , TemperaturaRESUMO
Herbicides are increasingly recognised as sources of water pollution. Glyphosate-based herbicides (GBHs) are widely used because of their low cost and high effectiveness. By measuring the photosynthetic efficiency of Fucus virsoides fronds exposed to a GBH (Roundup® Power 2.0), we investigated the effect of a continuous exposure (6 days) and the potential of recovery after a short exposure (24â¯h). Both experiments were carried out combining GBH with and without nutrient enrichment, simulating a runoff event. A factorial experimental design allowed us to assess the potential of interactions between GBH and nutrients, which are likely to co-occur in coastal areas. Our results show deleterious effects of GBH at low concentration on F. virsoides, independently from the duration of exposure and the presence of nutrients.
Assuntos
Fucus/efeitos dos fármacos , Glicina/análogos & derivados , Herbicidas/toxicidade , Animais , Glicina/toxicidade , Phaeophyceae , GlifosatoRESUMO
Habitat classifications provide guidelines for mapping and comparing marine resources across geographic regions. Calcareous bio-concretions and their associated biota have not been exhaustively categorized. Furthermore, for management and conservation purposes, species and habitat mapping is critical. Recently, several developments have occurred in the field of predictive habitat modeling, and multiple methods are available. In this study, we defined the habitats constituting northern Adriatic biogenic reefs and created a predictive habitat distribution model. We used an updated dataset of the epibenthic assemblages to define the habitats, which we verified using the fuzzy k-means (FKM) clustering method. Redundancy analysis was employed to model the relationships between the environmental descriptors and the FKM membership grades. Predictive modelling was carried out to map habitats across the basin. Habitat A (opportunistic macroalgae, encrusting Porifera, bioeroders) characterizes reefs closest to the coastline, which are affected by coastal currents and river inputs. Habitat B is distinguished by massive Porifera, erect Tunicata, and non-calcareous encrusting algae (Peyssonnelia spp.). Habitat C (non-articulated coralline, Polycitor adriaticus) is predicted in deeper areas. The onshore-offshore gradient explains the variability of the assemblages because of the influence of coastal freshwater, which is the main driver of nutrient dynamics. This model supports the interpretation of Habitat A and C as the extremes of a gradient that characterizes the epibenthic assemblages, while Habitat B demonstrates intermediate characteristics. Areas of transition are a natural feature of the marine environment and may include a mixture of habitats and species. The habitats proposed are easy to identify in the field, are related to different environmental features, and may be suitable for application in studies focused on other geographic areas. The habitat model outputs provide insight into the environmental drivers that control the distribution of the habitat and can be used to guide future research efforts and cost-effective management and conservation plans.