Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 186(4): 1893-1907, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618100

RESUMO

The WEE1 and ATM AND RAD3-RELATED (ATR) kinases are important regulators of the plant intra-S-phase checkpoint; consequently, WEE1KO and ATRKO roots are hypersensitive to replication-inhibitory drugs. Here, we report on a loss-of-function mutant allele of the FASCIATA1 (FAS1) subunit of the chromatin assembly factor 1 (CAF-1) complex that suppresses the phenotype of WEE1- or ATR-deficient Arabidopsis (Arabidopsis thaliana) plants. We demonstrate that lack of FAS1 activity results in the activation of an ATAXIA TELANGIECTASIA MUTATED (ATM)- and SUPPRESSOR OF GAMMA-RESPONSE 1 (SOG1)-mediated G2/M-arrest that renders the ATR and WEE1 checkpoint regulators redundant. This ATM activation accounts for the telomere erosion and loss of ribosomal DNA that are described for fas1 plants. Knocking out SOG1 in the fas1 wee1 background restores replication stress sensitivity, demonstrating that SOG1 is an important secondary checkpoint regulator in plants that fail to activate the intra-S-phase checkpoint.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Replicação do DNA , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-myb/genética , Transdução de Sinais , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Genoma de Planta , Instabilidade Genômica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502313

RESUMO

During DNA replication, the WEE1 kinase is responsible for safeguarding genomic integrity by phosphorylating and thus inhibiting cyclin-dependent kinases (CDKs), which are the driving force of the cell cycle. Consequentially, wee1 mutant plants fail to respond properly to problems arising during DNA replication and are hypersensitive to replication stress. Here, we report the identification of the polα-2 mutant, mutated in the catalytic subunit of DNA polymerase α, as a suppressor mutant of wee1. The mutated protein appears to be less stable, causing a loss of interaction with its subunits and resulting in a prolonged S-phase.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , DNA Polimerase I/genética , Resistência a Medicamentos/genética , Hidroxiureia/farmacologia , Mutação , Proteínas Serina-Treonina Quinases/deficiência , Antidrepanocíticos/farmacologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Ciclo Celular , Dano ao DNA , Fosforilação
3.
Plant Cell ; 27(1): 149-61, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25595823

RESUMO

To maintain genome integrity, DNA replication is executed and regulated by a complex molecular network of numerous proteins, including helicases and cell cycle checkpoint regulators. Through a systematic screening for putative replication mutants, we identified an Arabidopsis thaliana homolog of human Regulator of Telomere Length 1 (RTEL1), which functions in DNA replication, DNA repair, and recombination. RTEL1 deficiency retards plant growth, a phenotype including a prolonged S-phase duration and decreased cell proliferation. Genetic analysis revealed that rtel1 mutant plants show activated cell cycle checkpoints, specific sensitivity to DNA cross-linking agents, and increased homologous recombination, but a lack of progressive shortening of telomeres, indicating that RTEL1 functions have only been partially conserved between mammals and plants. Surprisingly, RTEL1 deficiency induces tolerance to the deoxynucleotide-depleting drug hydroxyurea, which could be mimicked by DNA cross-linking agents. This resistance does not rely on the essential replication checkpoint regulator WEE1 but could be blocked by a mutation in the SOG1 transcription factor. Taken together, our data indicate that RTEL1 is required for DNA replication and that its deficiency activates a SOG1-dependent replication checkpoint.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , DNA Helicases/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Dano ao DNA/genética , Dano ao DNA/fisiologia , DNA Helicases/deficiência , DNA Helicases/genética , Replicação do DNA/genética , Replicação do DNA/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Telômero/genética , Fatores de Transcrição/genética
4.
Plant Cell ; 26(9): 3680-92, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25217508

RESUMO

The WEE1 kinase is an essential cell cycle checkpoint regulator in Arabidopsis thaliana plants experiencing replication defects. Whereas under non-stress conditions WEE1-deficient plants develop normally, they fail to adapt to replication inhibitory conditions, resulting in the accumulation of DNA damage and loss of cell division competence. We identified mutant alleles of the genes encoding subunits of the ribonuclease H2 (RNase H2) complex, known for its role in removing ribonucleotides from DNA-RNA duplexes, as suppressor mutants of WEE1 knockout plants. RNase H2 deficiency triggered an increase in homologous recombination (HR), correlated with the accumulation of γ-H2AX foci. However, as HR negatively impacts the growth of WEE1-deficient plants under replication stress, it cannot account for the rescue of the replication defects of the WEE1 knockout plants. Rather, the observed increase in ribonucleotide incorporation in DNA indicates that the substitution of deoxynucleotide with ribonucleotide abolishes the need for WEE1 under replication stress. Strikingly, increased ribonucleotide incorporation in DNA correlated with the occurrence of small base pair deletions, identifying the RNase H2 complex as an important suppressor of genome instability.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Pontos de Checagem do Ciclo Celular , Instabilidade Genômica , Proteínas Serina-Treonina Quinases/metabolismo , Ribonuclease H/deficiência , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Pareamento de Bases , Sequência de Bases , Domínio Catalítico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Genes de Plantas , Instabilidade Genômica/efeitos dos fármacos , Hidroxiureia/farmacologia , Dados de Sequência Molecular , Mutação/genética , Taxa de Mutação , Recombinação Genética/genética , Ribonuclease H/química , Ribonuclease H/genética , Ribonuclease H/metabolismo , Ribonucleotídeos/metabolismo
5.
Plant Signal Behav ; 10(4): e1001226, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25875879

RESUMO

Because of their sessile lifestyle, plants have developed extensive mechanisms to safeguard their genetic information from one generation to the next. The WEE1 kinase is one of the guardians of genome integrity, being important during S-phase progression under replication stress. Knock-out plants for WEE1 (WEE1(KO)) show a hypersensitive response when grown on replication-inhibiting drugs. Recently, we reported the identification of a mutant in the RNase H2A gene that could partially complement this replication phenotype. Here, we present the identification of a second member of the RNase H2 complex, RNase H2B, being able to complement the root growth phenotype of WEE1(KO) plants. We additionally show that deletion of a conserved domain in RNase H2B leads to loss of interaction with the RNase H2C subunit, likely explaining the loss of activity of the RNase H2 complex.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Hidroxiureia/farmacologia , Proteínas Serina-Treonina Quinases/deficiência , Ribonucleases/metabolismo , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/química , Sequência Conservada , Reparo do DNA , Dados de Sequência Molecular , Mutação , Ligação Proteica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa