Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(41): 26506-26512, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30306991

RESUMO

Using periodic density functional theory-based calculations, in the present study, we address the chemical bonding between aluminium clusters (Aln, n = 4-8 and 13) and monovacant defective graphene. The adsorption strength of the above-mentioned aluminium clusters is fivefold (∼3 to 5 eV) higher on defective graphene as compared to the earlier reported values on non-defective graphene and BN-doped graphene. The Bader charge analysis and different charge densities reveal that this adsorption is driven by significant charge transfer from the Al clusters to defective graphene. Thus, chemisorbed Al clusters demonstrate high activity towards dissociative adsorption of molecular hydrogen.

2.
Front Chem ; 9: 733422, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568282

RESUMO

Using the periodic density functional theory-based methodology, we propose a potential catalytic system for dinitrogen activation, viz., single metal atoms (Mo, Fe, and V) supported on graphene-based sheets. Graphene-based sheets show an excellent potential toward the anchoring of single atoms on them (Mo, Fe, and V) with adsorption energies ranging between 1.048 and 10.893 eV. Factors such as defects and BN doping are noted to enhance the adsorption energies of single metal atoms on the support. The adsorption of a dinitrogen molecule on metal atom-anchored graphene-based supports is seen to be highly favorable, ranging between 0.620 and 2.278 eV. The adsorption is driven through a direct hybridization between the d orbitals of the metal atom (Mo, Fe, and V) on the support and the p orbital of the molecular nitrogen. Noticeably, BN-doped graphene supporting a single metal atom (Mo, Fe, and V) activates the N2 molecule with a red shift in the N-N stretching frequency (1,597 cm-1 as compared to 2,330 cm-1 in the free N2 molecule). This red shift is corroborated by an increase in the N-N bond length (1.23 Å from 1.09 Å) and charge transfer to an N2 molecule from the catalyst.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa