RESUMO
Tumor expression of prostate-specific membrane antigen (PSMA) is lost in 15-20% of men with castration-resistant prostate cancer (CRPC), yet the underlying mechanisms remain poorly defined. In androgen receptor (AR)-positive CRPC, we observed lower PSMA expression in liver lesions versus other sites, suggesting a role of the microenvironment in modulating PSMA. PSMA suppression was associated with promoter histone 3 lysine 27 methylation and higher levels of neutral amino acid transporters, correlating with 18F-fluciclovine uptake on positron emission tomography imaging. While PSMA is regulated by AR, we identified a subset of AR-negative CRPC with high PSMA. HOXB13 and AR co-occupancy at the PSMA enhancer and knockout models point to HOXB13 as an upstream regulator of PSMA in AR-positive and AR-negative prostate cancer. These data demonstrate how PSMA expression is differentially regulated across metastatic lesions and in the context of the AR, which may inform selection for PSMA-targeted therapies and development of complementary biomarkers.
Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Próstata/metabolismo , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Microambiente TumoralRESUMO
Treatment-induced neuroendocrine prostate cancer (NEPC) is a lethal subtype of castration-resistant prostate cancer. Using the 89Zr-labeled delta-like ligand 3 (DLL3) targeting antibody SC16 (89Zr-desferrioxamine [DFO]-SC16), we have developed a PET agent to noninvasively identify the presence of DLL3-positive NEPC lesions. Methods: Quantitative polymerase chain reaction and immunohistochemistry were used to compare relative levels of androgen receptor (AR)-regulated markers and the NEPC marker DLL3 in a panel of prostate cancer cell lines. PET imaging with 89Zr-DFO-SC16, 68Ga-PSMA-11, and 68Ga-DOTATATE was performed on H660 NEPC-xenografted male nude mice. 89Zr-DFO-SC16 uptake was corroborated by biodistribution studies. Results: In vitro studies demonstrated that H660 NEPC cells are positive for DLL3 and negative for AR, prostate-specific antigen, and prostate-specific membrane antigen (PSMA) at both the transcriptional and the translational levels. PET imaging and biodistribution studies confirmed that 89Zr-DFO-SC16 uptake is restricted to H660 xenografts, with background uptake in non-NEPC lesions (both AR-dependent and AR-independent). Conversely, H660 xenografts cannot be detected with imaging agents targeting PSMA (68Ga-PSMA-11) or somatostatin receptor subtype 2 (68Ga-DOTATATE). Conclusion: These studies demonstrated that H660 NEPC cells selectively express DLL3 on their cell surface and can be noninvasively identified with 89Zr-DFO-SC16.
Assuntos
Carcinoma Neuroendócrino , Neoplasias da Próstata , Animais , Carcinoma Neuroendócrino/metabolismo , Linhagem Celular Tumoral , Desferroxamina/química , Isótopos de Gálio , Radioisótopos de Gálio , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Ligantes , Masculino , Proteínas de Membrana , Camundongos , Camundongos Nus , Imagem Molecular , Tomografia por Emissão de Pósitrons , Próstata/patologia , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/patologia , Cintilografia , Compostos Radiofarmacêuticos/metabolismo , Receptores Androgênicos/metabolismo , Receptores de Somatostatina/metabolismo , Distribuição TecidualRESUMO
18F-FAC (2'-deoxy-2'-18F-fluoro-ß-d-arabinofuranosylcytosine) has close structural similarity to gemcitabine and thus offers the potential to image drug delivery to tumors. We compared tumor 18F-FAC PET images with 14C-gemcitabine levels, established ex vivo, in 3 mouse models of pancreatic cancer. We further modified tumor gemcitabine levels with injectable PEGylated recombinant human hyaluronidase (PEGPH20) to test whether changes in gemcitabine would be tracked by 18F-FAC. Methods:18F-FAC was synthesized as described previously. Three patient-derived xenograft (PDX) models were grown in the flanks of NSG mice. Mice were given PEGPH20 or vehicle intravenously 24 h before coinjection of 18F-FAC and 14C-gemcitabine. Animals were euthanized and imaged 1 h after tracer administration. Tumor and muscle uptake of both 18F-FAC and 14C-gemcitabine was obtained ex vivo. The efficacy of PEPGPH20 was validated through staining with hyaluronic acid binding protein. Additionally, an organoid culture, initiated from a KPC (Pdx-1 Cre LSL-KrasG12D LSL-p53R172H) tumor, was used to generate orthotopically growing tumors in C57BL/6J mice, and these tumors were then serially transplanted. Animals were injected with PEGPH20 and 14C-gemcitabine as described above to validate increased drug uptake by ex vivo assay. PET/MR images were obtained using a PET insert on a 7-T MR scanner. Animals were imaged immediately before injection with PEGPH20 and again 24 h later. Results: Tumor-to-muscle ratios of 14C-gemcitabine and 18F-FAC correlated well across all PDX models and treatments (R2 = 0.78). There was a significant increase in the tumor PET signal in PEGPH20-treated PDX animals, and this signal was matched in ex vivo counts for 2 of 3 models. In KPC-derived tumors, PEGPH20 raised 14C-gemcitabine levels (tumor-to-muscle ratio of 1.9 vs. 2.4, control vs. treated, P = 0.013). PET/MR 18F-FAC images showed a 12% increase in tumor 18F-FAC uptake after PEGPH20 treatment (P = 0.023). PEGPH20-treated animals uniformly displayed clear reductions in hyaluronic acid staining. Conclusion:18F-FAC PET was shown to be a good surrogate for gemcitabine uptake and, when combined with MR, to successfully determine drug uptake in tumors growing in the pancreas. PEGPH20 had moderate effects on tumor uptake of gemcitabine.
Assuntos
Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/metabolismo , Tomografia por Emissão de Pósitrons , Animais , Desoxicitidina/química , Desoxicitidina/metabolismo , Desoxicitidina/uso terapêutico , Modelos Animais de Doenças , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Hialuronoglucosaminidase/metabolismo , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , GencitabinaRESUMO
PURPOSE: We studied the effect of varying specific activity of [68Ga]DKFZ-PSMA11 ([68Ga]DP11) on repeated imaging of prostate-specific membrane antigen-positive (PSMA+) xenograft tumors. PROCEDURES: Athymic nude mice bearing PC3-PIP (PSMA+) and PC3 (PSMA-) bilateral flank tumors were assessed to study intra- and inter-day repeatability of [68Ga]DP11 imaging in mice administered [68Ga]DP11 or [67Ga]DP11 (as a dilution tracer) using imaging and biodistribution studies. RESULTS: Region of interest (ROI) analysis of the [68Ga]DP11 imaging study indicated that the uptake was constant on the same day or consecutive days. Prior imaging with [68Ga]DP11 did not significantly influence the subsequent uptake of [68Ga]DP11. Uptake of [68Ga]DP11 (60 min) and [67Ga]DP11 (24 h) in PC3-PIP tumors was 12.37 ± 4.19 %ID/g and 12.49 ± 6.88 %ID/g, respectively; [68Ga]DP11 was 13.83 ± 3.77 and 17.76 ± 1.84 on same-day and 15.98 ± 5.82 %ID/g on second-day imaging. CONCLUSIONS: This study demonstrates that [68Ga]DP11, in a given PSMA+ lesion, is constant under several same-day or serial-day imaging conditions.