Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Basic Res Cardiol ; 118(1): 22, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37233787

RESUMO

Ischaemic heart disease, which often manifests clinically as myocardial infarction (MI), remains a major cause of mortality worldwide. Despite the development of effective pre-clinical cardioprotective therapies, clinical translation has been disappointing. Nevertheless, the 'reperfusion injury salvage kinase' (RISK) pathway appears to be a promising target for cardioprotection. This pathway is crucial for the induction of cardioprotection by numerous pharmacological and non-pharmacological interventions, such as ischaemic conditioning. An important component of the cardioprotective effects of the RISK pathway involves the prevention of mitochondrial permeability transition pore (MPTP) opening and subsequent cardiac cell death. Here, we will review the historical perspective of the RISK pathway and focus on its interaction with mitochondria in the setting of cardioprotection.


Assuntos
Precondicionamento Isquêmico Miocárdico , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Humanos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/farmacologia , Isquemia Miocárdica/prevenção & controle , Isquemia Miocárdica/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias Cardíacas/metabolismo
2.
Cardiovasc Drugs Ther ; 36(5): 925-930, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34169381

RESUMO

PURPOSE: Coronavirus disease 19 (COVID-19) has, to date, been diagnosed in over 130 million persons worldwide and is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several variants of concern have emerged including those in the United Kingdom, South Africa, and Brazil. SARS-CoV-2 can cause a dysregulated inflammatory response known as a cytokine storm, which can progress rapidly to acute respiratory distress syndrome (ARDS), multi-organ failure, and death. Suppressing these cytokine elevations may be key to improving outcomes. Remote ischemic conditioning (RIC) is a simple, non-invasive procedure whereby a blood pressure cuff is inflated and deflated on the upper arm for several cycles. "RIC in COVID-19" is a pilot, multi-center, randomized clinical trial, designed to ascertain whether RIC suppresses inflammatory cytokine production. METHODS: A minimum of 55 adult patients with diagnosed COVID-19, but not of critical status, will be enrolled from centers in the United Kingdom, Brazil, and South Africa. RIC will be administered daily for up to 15 days. The primary outcome is the level of inflammatory cytokines that are involved in the cytokine storm that can occur following SARS-CoV-2 infection. The secondary endpoint is the time between admission and until intensive care admission or death. The in vitro cytotoxicity of patient blood will also be assessed using primary human cardiac endothelial cells. CONCLUSIONS: The results of this pilot study will provide initial evidence on the ability of RIC to suppress the production of inflammatory cytokines in the setting of COVID-19. TRIAL REGISTRATION: NCT04699227, registered January 7th, 2021.


Assuntos
COVID-19 , Adulto , Cuidados Críticos , Síndrome da Liberação de Citocina/prevenção & controle , Citocinas , Células Endoteliais , Humanos , Projetos Piloto , SARS-CoV-2 , Resultado do Tratamento
3.
Artigo em Inglês | MEDLINE | ID: mdl-36445625

RESUMO

PURPOSE: Patients hospitalized with COVID-19 may develop a hyperinflammatory, dysregulated cytokine "storm" that rapidly progresses to acute respiratory distress syndrome, multiple organ dysfunction, and even death. Remote ischaemic conditioning (RIC) has elicited anti-inflammatory and cytoprotective benefits by reducing cytokines following sepsis in animal studies. Therefore, we investigated whether RIC would mitigate the inflammatory cytokine cascade induced by COVID-19. METHODS: We conducted a prospective, multicentre, randomized, sham-controlled, single-blind trial in Brazil and South Africa. Non-critically ill adult patients with COVID-19 pneumonia were randomly allocated (1:1) to receive either RIC (intermittent ischaemia/reperfusion applied through four 5-min cycles of inflation (20 mmHg above systolic blood pressure) and deflation of an automated blood-pressure cuff) or sham for approximately 15 days. Serum was collected following RIC/sham administration and analyzed for inflammatory cytokines using flow cytometry. The endpoint was the change in serum cytokine concentrations. Participants were followed for 30 days. RESULTS: Eighty randomized participants (40 RIC and 40 sham) completed the trial. Baseline characteristics according to trial intervention were overall balanced. Despite downward trajectories of all cytokines across hospitalization, we observed no substantial changes in cytokine concentrations after successive days of RIC. Time to clinical improvement was similar in both groups (HR 1.66; 95% CI, 0.938-2.948, p 0.08). Overall RIC did not demonstrate a significant impact on the composite outcome of all-cause death or clinical deterioration (HR 1.19; 95% CI, 0.616-2.295, p = 0.61). CONCLUSION: RIC did not reduce the hypercytokinaemia induced by COVID-19 or prevent clinical deterioration to critical care. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04699227.

4.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163044

RESUMO

Biological sex influences disease development and progression. The steroid hormone 17ß-oestradiol (E2), along with its receptors, is expected to play a major role in the manifestation of sex differences. E2 exerts pleiotropic effects in a system-specific manner. Mitochondria are one of the central targets of E2, and their biogenesis and respiration are known to be modulated by E2. More recently, it has become apparent that E2 also regulates mitochondrial fusion-fission dynamics, thereby affecting cellular metabolism. The aim of this article is to discuss the regulatory pathways by which E2 orchestrates the activity of several components of mitochondrial dynamics in the cardiovascular and nervous systems in health and disease. We conclude that E2 regulates mitochondrial dynamics to maintain the mitochondrial network promoting mitochondrial fusion and attenuating mitochondrial fission in both the cardiovascular and nervous systems.


Assuntos
Estradiol/farmacologia , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Animais , Sistema Cardiovascular/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Mitocôndrias/efeitos dos fármacos , Sistema Nervoso/metabolismo , Caracteres Sexuais
5.
J Struct Biol ; 202(3): 275-285, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29477758

RESUMO

This paper presents a new algorithm to automatically segment the myofibrils, mitochondria and nuclei within single adult cardiac cells that are part of a large serial-block-face scanning electron microscopy (SBF-SEM) dataset. The algorithm only requires a set of manually drawn contours that roughly demarcate the cell boundary at routine slice intervals (every 50th, for example). The algorithm correctly classified pixels within the single cell with 97% accuracy when compared to manual segmentations. One entire cell and the partial volumes of two cells were segmented. Analysis of segmentations within these cells showed that myofibrils and mitochondria occupied 47.5% and 51.6% on average respectively, while the nuclei occupy 0.7% of the cell for which the entire volume was captured in the SBF-SEM dataset. Mitochondria clustering increased at the periphery of the nucleus region and branching points of the cardiac cell. The segmentations also showed high area fraction of mitochondria (up to 70% of the 2D image slice) in the sub-sarcolemmal region, whilst it was closer to 50% in the intermyofibrillar space. We finally demonstrate that our segmentations can be turned into 3D finite element meshes for cardiac cell computational physiology studies. We offer our large dataset and MATLAB implementation of the algorithm for research use at www.github.com/CellSMB/sbfsem-cardiac-cell-segmenter/. We anticipate that this timely tool will be of use to cardiac computational and experimental physiologists alike who study cardiac ultrastructure and its role in heart function.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia Eletrônica de Varredura/métodos , Miócitos Cardíacos/ultraestrutura , Análise de Célula Única/métodos , Adulto , Humanos
6.
Cardiovasc Drugs Ther ; 31(1): 87-107, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28190190

RESUMO

Mitochondrial health is critically dependent on the ability of mitochondria to undergo changes in mitochondrial morphology, a process which is regulated by mitochondrial shaping proteins. Mitochondria undergo fission to generate fragmented discrete organelles, a process which is mediated by the mitochondrial fission proteins (Drp1, hFIS1, Mff and MiD49/51), and is required for cell division, and to remove damaged mitochondria by mitophagy. Mitochondria undergo fusion to form elongated interconnected networks, a process which is orchestrated by the mitochondrial fusion proteins (Mfn1, Mfn2 and OPA1), and which enables the replenishment of damaged mitochondrial DNA. In the adult heart, mitochondria are relatively static, are constrained in their movement, and are characteristically arranged into 3 distinct subpopulations based on their locality and function (subsarcolemmal, myofibrillar, and perinuclear). Although the mitochondria are arranged differently, emerging data supports a role for the mitochondrial shaping proteins in cardiac health and disease. Interestingly, in the adult heart, it appears that the pleiotropic effects of the mitochondrial fusion proteins, Mfn2 (endoplasmic reticulum-tethering, mitophagy) and OPA1 (cristae remodeling, regulation of apoptosis, and energy production) may play more important roles than their pro-fusion effects. In this review article, we provide an overview of the mitochondrial fusion and fission proteins in the adult heart, and highlight their roles as novel therapeutic targets for treating cardiac disease.


Assuntos
Cardiopatias/metabolismo , Cardiopatias/terapia , Mitocôndrias Cardíacas/metabolismo , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Miocárdio/metabolismo , Animais , Apoptose , Metabolismo Energético , Cardiopatias/patologia , Cardiopatias/fisiopatologia , Humanos , Mitocôndrias Cardíacas/patologia , Mitofagia , Miocárdio/patologia , Necrose , Transdução de Sinais
8.
Basic Res Cardiol ; 111(6): 69, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27743118

RESUMO

In this meeting report, particularly addressing the topic of protection of the cardiovascular system from ischemia/reperfusion injury, highlights are presented that relate to conditioning strategies of the heart with respect to molecular mechanisms and outcome in patients' cohorts, the influence of co-morbidities and medications, as well as the contribution of innate immune reactions in cardioprotection. Moreover, developmental or systems biology approaches bear great potential in systematically uncovering unexpected components involved in ischemia-reperfusion injury or heart regeneration. Based on the characterization of particular platelet integrins, mitochondrial redox-linked proteins, or lipid-diol compounds in cardiovascular diseases, their targeting by newly developed theranostics and technologies opens new avenues for diagnosis and therapy of myocardial infarction to improve the patients' outcome.


Assuntos
Cardiologia/tendências , Doenças Cardiovasculares , Nanomedicina Teranóstica/tendências , Animais , Cardiologia/métodos , Humanos
9.
J Mol Cell Cardiol ; 78: 23-34, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25446182

RESUMO

Ischemic heart disease (IHD) remains the leading cause of death and disability worldwide. For patients presenting with an acute myocardial infarction, the most effective treatment for limiting myocardial infarct (MI) size is timely reperfusion. However, in addition to the injury incurred during acute myocardial ischemia, the process of reperfusion can itself induce myocardial injury and cardiomyocyte death, termed 'myocardial reperfusion injury', the combination of which can be referred to as acute ischemia-reperfusion injury (IRI). Crucially, there is currently no effective therapy for preventing this form of injury, and novel cardioprotective therapies are therefore required to protect the heart against acute IRI in order to limit MI size and preserve cardiac function. The opening of the mitochondrial permeability transition pore (MPTP) in the first few minutes of reperfusion is known to be a critical determinant of IRI, contributing up to 50% of the final MI size. Importantly, preventing its opening at this time using MPTP inhibitors, such as cyclosporin-A, has been reported in experimental and clinical studies to reduce MI size and preserve cardiac function. However, more specific and novel MPTP inhibitors are required to translate MPTP inhibition as a cardioprotective strategy into clinical practice. In this article, we review the role of the MPTP as a mediator of acute myocardial IRI and as a therapeutic target for cardioprotection. This article is part of a Special Issue entitled "Mitochondria: From Basic Mitochondrial Biology to Cardiovascular Disease".


Assuntos
Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Transporte Biológico , Humanos , Precondicionamento Isquêmico Miocárdico , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Poro de Transição de Permeabilidade Mitocondrial , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Terapia de Alvo Molecular , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
10.
Cardiovasc Res ; 118(4): 1115-1125, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33878183

RESUMO

AIMS: Acute myocardial infarction causes lethal cardiomyocyte injury during ischaemia and reperfusion (I/R). Histones have been described as important Danger Associated Molecular Proteins (DAMPs) in sepsis. The objective of this study was to establish whether extracellular histone release contributes to myocardial infarction. METHODS AND RESULTS: Isolated, perfused rat hearts were subject to I/R. Nucleosomes and histone-H4 release was detected early during reperfusion. Sodium-ß-O-Methyl cellobioside sulfate (mCBS), a newly developed histone-neutralizing compound, significantly reduced infarct size whilst also reducing the detectable levels of histones. Histones were directly toxic to primary adult rat cardiomyocytes in vitro. This was prevented by mCBS or HIPe, a recently described, histone-H4 neutralizing peptide, but not by an inhibitor of TLR4, a receptor previously reported to be involved in DAMP-mediated cytotoxicity. Furthermore, TLR4-reporter HEK293 cells revealed that cytotoxicity of histone H4 was independent of TLR4 and NF-κB. In an in vivo rat model of I/R, HIPe significantly reduced infarct size. CONCLUSION: Histones released from the myocardium are cytotoxic to cardiomyocytes, via a TLR4-independent mechanism. The targeting of extracellular histones provides a novel opportunity to limit cardiomyocyte death during I/R injury of the myocardium.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Animais , Células HEK293 , Histonas/metabolismo , Humanos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Ratos , Receptor 4 Toll-Like/metabolismo
11.
Cardiovasc Res ; 118(1): 282-294, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33386841

RESUMO

AIMS: Genetic and pharmacological inhibition of mitochondrial fission induced by acute myocardial ischaemia/reperfusion injury (IRI) has been shown to reduce myocardial infarct size. The clinically used anti-hypertensive and heart failure medication, hydralazine, is known to have anti-oxidant and anti-apoptotic effects. Here, we investigated whether hydralazine confers acute cardioprotection by inhibiting Drp1-mediated mitochondrial fission. METHODS AND RESULTS: Pre-treatment with hydralazine was shown to inhibit both mitochondrial fission and mitochondrial membrane depolarisation induced by oxidative stress in HeLa cells. In mouse embryonic fibroblasts (MEFs), pre-treatment with hydralazine attenuated mitochondrial fission and cell death induced by oxidative stress, but this effect was absent in MEFs deficient in the mitochondrial fission protein, Drp1. Molecular docking and surface plasmon resonance studies demonstrated binding of hydralazine to the GTPase domain of the mitochondrial fission protein, Drp1 (KD 8.6±1.0 µM), and inhibition of Drp1 GTPase activity in a dose-dependent manner. In isolated adult murine cardiomyocytes subjected to simulated IRI, hydralazine inhibited mitochondrial fission, preserved mitochondrial fusion events, and reduced cardiomyocyte death (hydralazine 24.7±2.5% vs. control 34.1±1.5%, P=0.0012). In ex vivo perfused murine hearts subjected to acute IRI, pre-treatment with hydralazine reduced myocardial infarct size (as % left ventricle: hydralazine 29.6±6.5% vs. vehicle control 54.1±4.9%, P=0.0083), and in the murine heart subjected to in vivo IRI, the administration of hydralazine at reperfusion, decreased myocardial infarct size (as % area-at-risk: hydralazine 28.9±3.0% vs. vehicle control 58.2±3.8%, P<0.001). CONCLUSION: We show that, in addition to its antioxidant and anti-apoptotic effects, hydralazine, confers acute cardioprotection by inhibiting IRI-induced mitochondrial fission, raising the possibility of repurposing hydralazine as a novel cardioprotective therapy for improving post-infarction outcomes.


Assuntos
Dinaminas/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Hidralazina/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Dinaminas/metabolismo , Feminino , Células HeLa , Humanos , Preparação de Coração Isolado , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais
12.
Cond Med ; 3(4): 216-226, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33134886

RESUMO

Heart failure (HF) is one of the leading causes of death and disability worldwide. The prevalence of HF continues to rise, and its outcomes are worsened by risk factors such as age, diabetes, obesity, hypertension, and ischemic heart disease. Hence, there is an unmet need to identify novel treatment targets that can prevent the development and progression of HF in order to improve patient outcomes. In this regard, cardiac mitochondria play an essential role in generating the ATP required to maintain normal cardiac contractile function. Mitochondrial dysfunction is known to contribute to the pathogenesis of a number of cardiomyopathies including those secondary to diabetes, pressure-overload left ventricular hypertrophy (LVH), and doxorubicin cardiotoxicity. Mitochondria continually change their shape by undergoing fusion and fission, and an imbalance in mitochondrial fusion and fission have been shown to impact on mitochondrial function, and contribute to the pathogenesis of these cardiomyopathies. In this review article, we focus on the role of mitochondrial shaping proteins as contributors to the development of three cardiomyopathies, and highlight their therapeutic potential as novel treatment targets for preventing the onset and progression of HF.

13.
Artigo em Inglês | MEDLINE | ID: mdl-28736742

RESUMO

RATIONALE: Three subsets of mitochondria have been described in adult cardiomyocytes - intermyofibrillar (IMF), subsarcolemmal (SSM), and perinuclear (PN). They have been shown to differ in physiology, but whether they also vary in morphological characteristics is unknown. Ischemic preconditioning (IPC) is known to prevent mitochondrial dysfunction induced by acute myocardial ischemia/reperfusion injury (IRI), but whether IPC can also modulate mitochondrial morphology is not known. AIMS: Morphological characteristics of three different subsets of adult cardiac mitochondria along with the effect of ischemia and IPC on mitochondrial morphology will be investigated. METHODS: Mouse hearts were subjected to the following treatments (N=6 for each group): stabilization only, IPC (3x5 min cycles of global ischemia and reperfusion), ischemia only (20 min global ischemia); and IPC and ischemia. Hearts were then processed for electron microscopy and mitochondrial morphology was assessed subsequently. RESULTS: In adult cardiomyocytes, IMF mitochondria were found to be more elongated and less spherical than PN and SSM mitochondria. PN mitochondria were smaller in size when compared to the other two subsets. SSM mitochondria had similar area to IMF mitochondria but their sphericity measures were similar to PN mitochondria. Ischemia was shown to increase the sphericity parameters of all 3 subsets of mitochondria; reduce the length of IMF mitochondria, and increase the size of PN mitochondria. IPC had no effect on mitochondrial morphology either at baseline or after ischemia. CONCLUSION: The three subsets of mitochondria in the adult heart are morphologically different. IPC does not appear to modulate mitochondrial morphology in adult cardiomyocytes.

14.
Physiol Rep ; 5(17)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28904083

RESUMO

The effects of mitofusin 2 (MFN2) deficiency, on mitochondrial morphology and the mitochondria-junctional sarcoplasmic reticulum (jSR) complex in the adult heart, have been previously investigated using 2D electron microscopy, an approach which is unable to provide a 3D spatial assessment of these imaging parameters. Here, we use 3D electron tomography to show that MFN2-deficient mitochondria are larger in volume, more elongated, and less rounded; have fewer mitochondria-jSR contacts, and an increase in the distance between mitochondria and jSR, when compared to WT mitochondria. In comparison to 2D electron microscopy, 3D electron tomography can provide further insights into mitochondrial morphology and the mitochondria-jSR complex in the adult heart.


Assuntos
GTP Fosfo-Hidrolases/deficiência , Mitocôndrias Musculares/ultraestrutura , Miócitos Cardíacos/ultraestrutura , Animais , Tomografia com Microscopia Eletrônica/métodos , GTP Fosfo-Hidrolases/genética , Imageamento Tridimensional/métodos , Camundongos , Mitocôndrias Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/ultraestrutura
15.
Eur J Pharmacol ; 763(Pt A): 104-14, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25987420

RESUMO

The past decade has witnessed a number of exciting developments in the field of mitochondrial dynamics - a phenomenon in which changes in mitochondrial shape and movement impact on cellular physiology and pathology. By undergoing fusion and fission, mitochondria are able to change their morphology between elongated interconnected networks and discrete fragmented structures, respectively. The cardiac mitochondria, in particular, have garnered much interest due to their unique spatial arrangement in the adult cardiomyocyte, and the multiple roles they play in cell death and survival. In this article, we review the role of the mitochondrial fusion and fission proteins as novel therapeutic targets for treating cardiovascular disease.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Terapia de Alvo Molecular/métodos , Animais , Doenças Cardiovasculares/patologia , Humanos
16.
Thromb Haemost ; 113(3): 513-21, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25253080

RESUMO

The mechanism through which the protein kinase Akt (also called PKB), protects the heart against acute ischaemia-reperfusion injury (IRI) is not clear. Here, we investigate whether Akt mediates its cardioprotective effect by modulating mitochondrial morphology. Transfection of HL-1 cardiac cells with constitutively active Akt (caAkt) changed mitochondrial morphology as evidenced by an increase in the proportion of cells displaying predominantly elongated mitochondria (73 ± 5.0 % caAkt vs 49 ± 5.8 % control: N=80 cells/group; p< 0.05). This effect was associated with delayed time taken to induce mitochondrial permeability transition pore (MPTP) opening (by 2.4 ± 0.5 fold; N=80 cells/group: p< 0.05); and reduced cell death following simulated IRI (32.8 ± 1.2 % caAkt vs 63.8 ± 5.6 % control: N=320 cells/group: p< 0.05). Similar effects on mitochondrial morphology, MPTP opening, and cell survival post-IRI, were demonstrated with pharmacological activation of Akt using the known cardioprotective cytokine, erythropoietin (EPO). The effect of Akt on inducing mitochondrial elongation was found to be dependent on the mitochondrial fusion protein, Mitofusin-1 (Mfn1), as ablation of Mfn1 in mouse embryonic fibroblasts (MEFs) abrogated Akt-mediated mitochondrial elongation. Finally, in vivo pre-treatment with EPO reduced myocardial infarct size (as a % of the area at risk) in adult mice subjected to IRI (26.2 ± 2.6 % with EPO vs 46.1 ± 6.5 % in control; N=7/group: p< 0.05), and reduced the proportion of cells displaying myofibrillar disarray and mitochondrial fragmentation observed by electron microscopy in adult murine hearts subjected to ischaemia from 5.8 ± 1.0 % to 2.2 ± 1.0 % (N=5 hearts/group; p< 0.05). In conclusion, we found that either genetic or pharmacological activation of Akt protected the heart against acute ischaemia-reperfusion injury by modulating mitochondrial morphology.


Assuntos
Mitocôndrias Cardíacas/enzimologia , Tamanho Mitocondrial , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Morte Celular , Linhagem Celular , Modelos Animais de Doenças , Ativação Enzimática , Eritropoetina/farmacologia , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Tamanho Mitocondrial/efeitos dos fármacos , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/ultraestrutura , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa