Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Steroid Biochem Mol Biol ; 192: 105115, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-29438723

RESUMO

We report the discovery of a novel nonsteroidal dual-action compound, ODM-204, that holds promise for treating patients with castration-resistant prostate cancer (CRPC), an advanced form of prostate cancer characterised by high androgen receptor (AR) expression and persistent activation of the AR signaling axis by residual tissue androgens. For ODM-204, has a dual mechanism of action. The compound is anticipated to efficiently dampen androgenic stimuli in the body by inhibiting CYP17A1, the prerequisite enzyme for the formation of dihydrotestosterone (DHT) and testosterone (T), and by blocking AR with high affinity and specificity. In our study, ODM-204 inhibited the proliferation of androgen-dependent VCaP and LNCaP cells in vitro and reduced significantly tumour growth in a murine VCaP xenograft model in vivo. Intriguingly, after a single oral dose of 10-30 mg/kg, ODM-204 dose-dependently inhibited adrenal and testicular steroid production in sexually mature male cynomolgus monkeys. Similar results were obtained in human chorionic gonadotropin-treated male rats. In rats, leuprolide acetate-mediated (LHRH agonist) suppression of the circulating testosterone levels and decrease in weights of androgen-sensitive organs was significantly and dose-dependently potentiated by the co-administration of ODM-204. ODM-204 was well tolerated in both rodents and primates. Based on our data, ODM-204 could provide an effective therapeutic option for men with CRPC.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Imidazóis/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/química , Esteroide 17-alfa-Hidroxilase/antagonistas & inibidores , Animais , Apoptose , Proliferação de Células , Haplorrinos , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Ratos , Ratos Sprague-Dawley , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Cancer Ther ; 18(1): 28-38, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30301864

RESUMO

Alterations in the gene encoding for the FGFR and upregulation of the VEGFR are found often in cancer, which correlate with disease progression and unfavorable survival. In addition, FGFR and VEGFR signaling synergistically promote tumor angiogenesis, and activation of FGFR signaling has been described as functional compensatory angiogenic signal following development of resistance to VEGFR inhibition. Several selective small-molecule FGFR kinase inhibitors are currently in clinical development. ODM-203 is a novel, selective, and equipotent inhibitor of the FGFR and VEGFR families. In this report we show that ODM-203 inhibits FGFR and VEGFR family kinases selectively and with equal potency in the low nanomolar range (IC50 6-35 nmol/L) in biochemical assays. In cellular assays, ODM-203 inhibits VEGFR-induced tube formation (IC50 33 nmol/L) with similar potency as it inhibits proliferation in FGFR-dependent cell lines (IC50 50-150 nmol/L). In vivo, ODM-203 shows strong antitumor activity in both FGFR-dependent xenograft models and in an angiogenic xenograft model at similar well-tolerated doses. In addition, ODM-203 inhibits metastatic tumor growth in a highly angiogenesis-dependent kidney capsule syngenic model. Interestingly, potent antitumor activity in the subcutaneous syngenic model correlated well with immune modulation in the tumor microenvironment as indicated by marked decrease in the expression of immune check points PD-1 and PD-L1 on CD8 T cells and NK cells, and increased activation of CD8 T cells. In summary, ODM-203 shows equipotent activity for both FGFR and VEGFR kinase families and antitumor activity in both FGFR and angigogenesis models.


Assuntos
Antígeno B7-H1/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Neoplasias Renais/tratamento farmacológico , Receptor de Morte Celular Programada 1/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Linfócitos T/metabolismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Neoplasias Renais/metabolismo , Células Matadoras Naturais/metabolismo , Camundongos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Sci Rep ; 5: 12007, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26137992

RESUMO

Activation of androgen receptor (AR) is crucial for prostate cancer growth. Remarkably, also castration-resistant prostate cancer (CRPC) is dependent on functional AR, and several mechanisms have been proposed to explain the addiction. Known causes of CRPC include gene amplification and overexpression as well as point mutations of AR. We report here the pharmacological profile of ODM-201, a novel AR inhibitor that showed significant antitumor activity and a favorable safety profile in phase 1/2 studies in men with CRPC. ODM-201 is a full and high-affinity AR antagonist that, similar to second-generation antiandrogens enzalutamide and ARN-509, inhibits testosterone-induced nuclear translocation of AR. Importantly, ODM-201 also blocks the activity of the tested mutant ARs arising in response to antiandrogen therapies, including the F876L mutation that confers resistance to enzalutamide and ARN-509. In addition, ODM-201 reduces the growth of AR-overexpressing VCaP prostate cancer cells both in vitro and in a castration-resistant VCaP xenograft model. In contrast to other antiandrogens, ODM-201 shows negligible brain penetrance and does not increase serum testosterone levels in mice. In conclusion, ODM-201 is a potent AR inhibitor that overcomes resistance to AR-targeted therapies by antagonizing both overexpressed and mutated ARs. ODM-201 is currently in a phase 3 trial in CRPC.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Pirazóis/farmacologia , Androgênios/fisiologia , Animais , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias da Próstata/patologia , Pirazóis/farmacocinética , Receptores Androgênicos/metabolismo , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa