Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Nutr Neurosci ; 25(11): 2408-2420, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34490827

RESUMO

Objectives: We have previously shown that the combined consumption of fat and a sucrose solution induces overeating, and there is evidence indicating that sucrose drinking directly stimulates fat intake. One neurochemical pathway by which sucrose may enhance fat intake is through the release of endogenous opioids in the nucleus accumbens (NAC).Methods: To test this hypothesis, we provided rats with a free-choice high-fat diet for two weeks. During the second week, rats had access to an additional bottle of water or a 30% sucrose solution for five minutes per day. After these two weeks, we infused vehicle or the µ-opioid receptor agonist [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) into the NAC 30 min after their daily access to the additional bottle of water or the sucrose solution.Results: Sucrose drinking had two effects, (1) it stimulated fat intake in the absence of DAMGO infusion, (2) it diminished sensitivity to DAMGO, as it prevented the rapid increase in fat intake typically seen upon DAMGO infusion in the nucleus accumbens. In a second experiment, we confirmed that these results are not due to the ingested calories of the sucrose solution. Lastly, we investigated which brain areas are involved in the observed effects on fat intake by assessing c-Fos-expression in brain areas previously linked to DAMGO's effects on food intake. Both intra-NAC DAMGO infusion and sucrose consumption in the absence of DAMGO infusion had no effect on c-Fos-expression in orexin neurons and the central amygdala but increased c-Fos-expression in the NAC as well as the basolateral amygdala.Discussion: In conclusion, we confirm that sucrose drinking stimulates fat intake, likely through the release of endogenous opioids.


Assuntos
Núcleo Accumbens , Receptores Opioides , Animais , Ratos , Encéfalo/metabolismo , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Ala(2)-MePhe(4)-Gly(5)-Encefalina/metabolismo , Núcleo Accumbens/metabolismo , Ratos Sprague-Dawley , Receptores Opioides/metabolismo , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Sacarose , Água , Proteínas Proto-Oncogênicas c-fos
2.
Int J Obes (Lond) ; 39(11): 1655-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26134416

RESUMO

Human and animal studies increasingly point toward a neural pathogenesis of the metabolic syndrome, involving hypothalamic and autonomic nervous system dysfunction. We hypothesized that increased very-low-density lipoprotein-triglyceride (VLDL-TG) secretion by the liver in a rat model for dyslipidemia, that is, the obese Zucker (fa/fa) rat, is due to relative hyperactivity of sympathetic, and/or hypoactivity of parasympathetic hepatic innervation. To test the involvement of the autonomic nervous system, we surgically denervated the sympathetic or parasympathetic hepatic nerve in obese Zucker rats. Our results show that cutting the sympathetic hepatic nerve lowers VLDL-TG secretion in obese rats, finally resulting in lower plasma TG concentrations after 6 weeks. In contrast, a parasympathetic denervation results in increased plasma total cholesterol concentrations. The effect of a sympathetic or parasympathetic denervation of the liver was independent of changes in humoral factors or changes in body weight or food intake. In conclusion, a sympathetic denervation improves the lipid profile in obese Zucker rats, whereas a parasympathetic denervation increases total cholesterol levels. We believe this is a novel treatment target, which should be further investigated.


Assuntos
Dislipidemias/metabolismo , Hipotálamo/metabolismo , Lipoproteínas VLDL/metabolismo , Fígado/inervação , Obesidade/patologia , Sistema Nervoso Simpático/patologia , Triglicerídeos/metabolismo , Animais , Denervação , Modelos Animais de Doenças , Fígado/metabolismo , Ratos , Ratos Zucker
3.
J Neuroendocrinol ; 36(2): e13367, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38281730

RESUMO

The hypothalamic paraventricular nucleus (PVN) is a highly complex brain region that is crucial for homeostatic regulation through neuroendocrine signaling, outflow of the autonomic nervous system, and projections to other brain areas. In the past years, single-cell datasets of the hypothalamus have contributed immensely to the current understanding of the diverse hypothalamic cellular composition. While the PVN has been adequately classified functionally, its molecular classification is currently still insufficient. To address this, we created a detailed atlas of PVN transcriptomic cell types by integrating various PVN single-cell datasets into a recently published hypothalamus single-cell transcriptome atlas. Furthermore, we functionally profiled transcriptomic cell types, based on relevant literature, existing retrograde tracing data, and existing single-cell data of a PVN-projection target region. Finally, we validated our findings with immunofluorescent stainings. In our PVN atlas dataset, we identify the well-known different neuropeptide types, each composed of multiple novel subtypes. We identify Avp-Tac1, Avp-Th, Oxt-Foxp1, Crh-Nr3c1, and Trh-Nfib as the most important neuroendocrine subtypes based on markers described in literature. To characterize the preautonomic functional population, we integrated a single-cell retrograde tracing study of spinally projecting preautonomic neurons into our PVN atlas. We identify these (presympathetic) neurons to cocluster with the Adarb2+ clusters in our dataset. Further, we identify the expression of receptors for Crh, Oxt, Penk, Sst, and Trh in the dorsal motor nucleus of the vagus, a key region that the pre-parasympathetic PVN neurons project to. Finally, we identify Trh-Ucn3 and Brs3-Adarb2 as some centrally projecting populations. In conclusion, our study presents a detailed overview of the transcriptomic cell types of the murine PVN and provides a first attempt to resolve functionality for the identified populations.


Assuntos
Núcleo Hipotalâmico Paraventricular , Transcriptoma , Camundongos , Animais , Núcleo Hipotalâmico Paraventricular/metabolismo , Análise da Expressão Gênica de Célula Única , Hipotálamo/metabolismo , Perfilação da Expressão Gênica
4.
Int J Obes (Lond) ; 35(4): 595-604, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20714332

RESUMO

OBJECTIVES: In diet-induced obesity, it is not clear whether impaired glucose metabolism is caused directly by the diet, or indirectly via obesity. This study examined the effects of different free-choice, high-caloric, obesity-inducing diets on glucose metabolism. In these free-choice diets, saturated fat and/or a 30% sugar solution are provided in an addition to normal chow pellets. METHOD: In the first experiment, male rats received a free-choice high-fat high-sugar (HFHS), free-choice high-fat (HF) or a chow diet. In a second experiment, male rats received a free-choice high-sugar (HS) diet or chow diet. For both experiments, after weeks 1 and 4, an intravenous glucose tolerance test was performed. RESULTS: Both the HFHS and HF diets resulted in obesity with comparable plasma concentrations of free fatty acids. Interestingly, the HF diet did not affect glucose metabolism, whereas the HFHS diet resulted in hyperglycemia, hyperinsulinemia and in glucose intolerance because of a diminished insulin response. Moreover, adiposity in rats on the HF diet correlated positively with the insulin response to the glucose load, whereas adiposity in rats on the HFHS diet showed a negative correlation. In addition, total caloric intake did not explain differences in glucose tolerance. To test whether sugar itself was crucial, we next performed a similar experiment in rats on the HS diet. Rats consumed three times as much sugar when compared with rats on the HFHS diet, which resulted in obesity with basal hyperinsulinemia. Glucose tolerance, however, was not affected. CONCLUSION: Together, these results suggest that not only obesity or total caloric intake, but the diet content also is crucial for the glucose intolerance that we observed in rats on the HFHS diet.


Assuntos
Glicemia/metabolismo , Gorduras na Dieta/efeitos adversos , Sacarose Alimentar/efeitos adversos , Intolerância à Glucose/etiologia , Obesidade/complicações , Animais , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/sangue , Sacarose Alimentar/administração & dosagem , Sacarose Alimentar/sangue , Ingestão de Energia , Teste de Tolerância a Glucose , Insulina/metabolismo , Masculino , Obesidade/sangue , Ratos , Ratos Wistar
5.
Ann Clin Biochem ; 45(Pt 4): 429-30, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18583632

RESUMO

BACKGROUND: The aim of this study is to compare the performance of three commonly used insulin assays with respect to the detection of exogenous human and porcine insulin added to human or rat plasma. METHODS: The DPC Immulite human insulin assay, the Mercodia rat insulin enzyme-linked immunosorbent assay and the Linco rat insulin radioimmunoassay were tested. RESULTS: The mean cross-reactivity of exogenous insulin ranged from 25% to 92%. The mean cross-reactivity of Actrapid in human plasma on the DPC Immulite was 56% and was independent of the endogenous insulin concentration. CONCLUSIONS: The measurement of exogenous insulin varies according to the source of exogenous insulin, matrix and insulin assay.


Assuntos
Técnica Clamp de Glucose/métodos , Insulina/sangue , Insulina/imunologia , Animais , Reações Cruzadas , Humanos , Ratos , Suínos
6.
J Neuroendocrinol ; 30(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29150901

RESUMO

The nuclear receptor REV-ERBα is part of the molecular clock mechanism and is considered to be involved in a variety of biological processes within metabolically active peripheral tissues as well. To investigate whether Rev-erbα (also known as Nr1d1) in the brain plays a role in the daily variations of energy metabolism, feeding behaviour and the sleep-wake cycle, we studied mice with global (GKO) or brain (BKO) deletion of Rev-erbα. Mice were studied both in a light/dark cycle and in constant darkness, and then 24-hour variations of Respiratory quotient (RQ) and energy expenditure, as well as the temporal patterns of rest-activity and feeding behaviour, were recorded. The RQ increase of GKO mice was not detected in BKO animals, indicating a peripheral origin for this metabolic alteration. Arrhythmic patterns of locomotor activity were only found in BKO mice. By contrast, the circadian rhythm of food intake was lost both in GKO and BKO mice, mostly by increasing the number of daytime meals. These changes in the circadian pattern of feeding behaviour were, to some extent, correlated with a loss of rhythmicity of hypothalamic Hcrt (also named Orx) mRNA levels. Taken together, these findings highlight that Rev-erbα in the brain is involved in the temporal partitioning of feeding and sleep, whereas its effects on energy metabolism are mainly exerted through its peripheral expression.


Assuntos
Encéfalo/metabolismo , Ritmo Circadiano/genética , Ingestão de Alimentos/genética , Metabolismo Energético/genética , Atividade Motora/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Animais , Comportamento Animal/fisiologia , Locomoção/genética , Masculino , Camundongos , Camundongos Knockout , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Fotoperíodo , Sono/genética
7.
J Biol Rhythms ; 21(6): 458-69, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17107936

RESUMO

The circadian clock in the suprachiasmatic nucleus (SCN) is composed of thousands of oscillator neurons, each dependent on the cell-autonomous action of a defined set of circadian clock genes. Still, the major question remains how these individual oscillators are organized into a biological clock producing a coherent output able to time all the different daily changes in behavior and physiology. In the present review, the authors discuss the anatomical connections and neurotransmitters used by the SCN to control the daily rhythms in hormone release. The efferent SCN projections mainly target neurons in the medial hypothalamus surrounding the SCN. The activity of these preautonomic and neuroendocrine target neurons is controlled by differentially timed waves of, among others, vasopressin, GABA, and glutamate release from SCN terminals. Together, the data on the SCN control of neuroendocrine rhythms provide clear evidence not only that the SCN consists of phenotypically (i.e., according to neurotransmitter content) different subpopulations of neurons but also that subpopulations should be distinguished (within phenotypically similar groups of neurons) based on the acrophase of their (electrical) activity. Moreover, the specialization of the SCN may go as far as a single body structure, that is, the SCN seems to contain neurons that specifically target the liver, pineal, and adrenal.


Assuntos
Relógios Biológicos/fisiologia , Ritmo Circadiano/fisiologia , Núcleo Supraquiasmático/fisiologia , Animais , Sistema Nervoso Autônomo/fisiologia , Humanos , Neurônios/fisiologia , Núcleo Supraquiasmático/metabolismo , Vasopressinas/fisiologia
8.
Neurosci Lett ; 637: 85-90, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-27888043

RESUMO

The brain is well known to regulate blood glucose, and the hypothalamus and hindbrain, in particular, have been studied extensively to understand the underlying mechanisms. Nuclei in these regions respond to alterations in blood glucose concentrations and can alter glucose liver output or glucose tissue uptake to maintain blood glucose concentrations within strict boundaries. Interestingly, several cortico-limbic regions also respond to alterations in glucose concentrations and have been shown to project to hypothalamic nuclei and glucoregulatory organs. For instance, electrical stimulation of the shell of the nucleus accumbens (sNAc) results in increased circulating concentrations of glucose and glucagon and activation of the lateral hypothalamus (LH). Whether this is caused by the simultaneous increase in serotonin release in the sNAc remains to be determined. To study the effect of sNAc serotonin on systemic glucose metabolism, we implanted bilateral microdialysis probes in the sNAc of male Wistar rats and infused fluoxetine, a serotonin reuptake inhibitor, or vehicle after which blood glucose, endogenous glucose production (EGP) and glucoregulatory hormones were measured. Fluoxetine in the sNAc for 1h significantly increased blood glucose concentrations without an effect on glucoregulatory hormones. This increase was accompanied by a higher EGP in the fluoxetine infused rats compared to the controls. These data provide further evidence for a role of sNAc-serotonin in the regulation of glucose metabolism.


Assuntos
Glicemia/metabolismo , Fluoxetina/farmacologia , Glucose/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Animais , Fluoxetina/administração & dosagem , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Microdiálise/métodos , Núcleo Accumbens/metabolismo , Ratos Wistar , Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem
9.
PLoS One ; 12(10): e0185520, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28968417

RESUMO

INTRODUCTION: With chronotherapy, drug administration is synchronized with daily rhythms in drug clearance and pharmacokinetics. Daily rhythms in gene expression are centrally mastered by the suprachiasmatic nucleus of the hypothalamus as well as by tissue clocks containing similar molecular mechanisms in peripheral organs. The central timing system is sensitive to changes in the external environment such as those of the light-dark cycle, meal timing and meal composition. We investigated how changes in diet composition and meal timing would affect the daily hepatic expression rhythms of the nuclear receptors PXR and CAR and of enzymes involved in P450 mediated drug metabolism, as such changes could have consequences for the practice of chronotherapy. MATERIALS AND METHODS: Rats were subjected to either a regular chow or a free choice high-fat-high-sugar (fcHFHS) diet. These diets were provided ad libitum, or restricted to either the light phase or the dark phase. In a second experiment, rats had access to chow either ad libitum or in 6 meals equally distributed over 24 hours. RESULTS: Pxr, Alas1 and Por displayed significant day-night rhythms under ad libitum chow fed conditions, which for Pxr was disrupted under fcHFHS diet conditions. Although no daily rhythms were detected in expression of CAR, Cyp2b2 and Cyp3a2, the fcHFHS diet did affect basal expression of these genes. In chow fed rats, dark phase feeding induced a diurnal rhythm in Cyp2b2 expression while light phase feeding induced a diurnal rhythm in Car expression and completely shifted the peak expression of Pxr, Car, Cyp2b2, Alas1 and Por. The 6-meals-a-day feeding only abolished the Pxr rhythm but not the rhythms of the other genes. CONCLUSION: We conclude that although nuclear receptors and enzymes involved in the regulation of hepatic drug metabolism are sensitive to meal composition, changes in meal timing are mainly effectuated via changes in the molecular clock.


Assuntos
Comportamento Alimentar , Expressão Gênica , Fígado/metabolismo , Preparações Farmacêuticas/metabolismo , Ração Animal , Animais , Cronoterapia , Ritmo Circadiano , Sistema Enzimático do Citocromo P-450/metabolismo , Masculino , Farmacocinética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real
10.
Chronobiol Int ; 23(1-2): 201-15, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16687294

RESUMO

The circadian clock in the suprachiasmatic nuclei (SCN) is composed of thousands of oscillator neurons, each of which is dependent on the cell-autonomous action of a defined set of circadian clock genes. A major question is still how these individual oscillators are organized into a biological clock producing a coherent output that is able to time all the different daily changes in behavior and physiology. We investigated which anatomical connections and neurotransmitters are used by the biological clock to control the daily release pattern of a number of hormones. The picture that emerged shows projections contacting target neurons in the medial hypothalamus surrounding the SCN. The activity of these pre-autonomic and neuro-endocrine target neurons is controlled by differentially timed waves of, among others, vasopressin, GABA, and glutamate release from SCN terminals. Together our data indicate that, with regard to the timing of their main release period within the light-dark (LD) cycle, at least 4 subpopulations of SCN neurons should be discerned. The different subgroups do not necessarily follow the phenotypic differences among SCN neurons. Thus, different subgroups can be found within neuron populations containing the same neurotransmitter. Remarkably, a similar distinction of 4 differentially timed subpopulations of SCN neurons was recently also discovered in experiments determining the temporal patterns of rhythmicity in individual SCN neurons by way of the electrophysiology or clock gene expression. Moreover, the specialization of the SCN may go as far as a single body structure; i.e., the SCN seems to contain neurons that specifically target the liver, pineal, and adrenal.


Assuntos
Relógios Biológicos , Ritmo Circadiano , Núcleo Supraquiasmático/fisiologia , Glândulas Suprarrenais/metabolismo , Animais , Ácido Glutâmico/metabolismo , Humanos , Fígado/metabolismo , Melatonina/metabolismo , Modelos Biológicos , Neurônios/metabolismo , Oscilometria , Glândula Pineal/metabolismo , Receptores de GABA/metabolismo , Vasopressinas/metabolismo
11.
Chronobiol Int ; 23(3): 521-35, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16753939

RESUMO

The circadian clock in the suprachiasmatic nuclei (SCN) is composed of thousands of oscillator neurons, each dependent on the cell-autonomous action of a defined set of circadian clock genes. A major question is still how these individual oscillators are organized into a biological clock that produces a coherent output capable of timing all the different daily changes in behavior and physiology. We investigated which anatomical connections and neurotransmitters are used by the biological clock to control the daily release pattern of a number of hormones. The picture that emerged shows projections contacting target neurons in the medial hypothalamus surrounding the SCN. The activity of these pre-autonomic and neuro-endocrine target neurons is controlled by differentially timed waves of vasopressin, GABA, and glutamate release from SCN terminals, among other factors. Together our data indicate that, with regard to the timing of their main release period within the LD cycle, at least four subpopulations of SCN neurons should be discernible. The different subgroups do not necessarily follow the phenotypic differences among SCN neurons. Thus, different subgroups can be found within neuron populations containing the same neurotransmitter. Remarkably, a similar distinction of four differentially timed subpopulations of SCN neurons was recently also discovered in experiments determining the temporal patterns of rhythmicity in individual SCN neurons by way of the electrophysiology or clock gene expression. Moreover, the specialization of the SCN may go as far as a single body structure, i.e., the SCN seems to contain neurons that specifically target the liver, pineal gland, and adrenal gland.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Relógios Biológicos/fisiologia , Animais , Ritmo Circadiano/fisiologia , Ácido Glutâmico/fisiologia , Humanos , Melatonina/fisiologia , Neurônios/classificação , Neurônios/fisiologia , Núcleo Supraquiasmático/citologia , Núcleo Supraquiasmático/fisiologia , Vasopressinas/fisiologia , Ácido gama-Aminobutírico/fisiologia
12.
J Endocrinol ; 229(1): 37-45, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26865639

RESUMO

In addition to the direct effects of thyroid hormone (TH) on peripheral organs, recent work showed metabolic effects of TH on the liver and brown adipose tissue via neural pathways originating in the hypothalamic paraventricular and ventromedial nucleus (PVN and VMH). So far, these experiments focused on short-term administration of TH. The aim of this study is to develop a technique for chronic and nucleus-specific intrahypothalamic administration of the biologically active TH tri-iodothyronine (T3). We used beeswax pellets loaded with an amount of T3 based on in vitro experiments showing stable T3 release (∼5 nmol l(-1)) for 32 days. Upon stereotactic bilateral implantation, T3 concentrations were increased 90-fold in the PVN region and 50-fold in the VMH region after placing T3-containing pellets in the rat PVN or VMH for 28 days respectively. Increased local T3 concentrations were reflected by selectively increased mRNA expression of the T3-responsive genes Dio3 and Hr in the PVN or in the VMH. After placement of T3-containing pellets in the PVN, Tshb mRNA was significantly decreased in the pituitary, without altered Trh mRNA in the PVN region. Plasma T3 and T4 concentrations decreased without altered plasma TSH. We observed no changes in pituitary Tshb mRNA, plasma TSH, or plasma TH in rats after placement of T3-containing pellets in the VMH. We developed a method to selectively and chronically deliver T3 to specific hypothalamic nuclei. This will enable future studies on the chronic effects of intrahypothalamic T3 on energy metabolism via the PVN or VMH.


Assuntos
Modelos Animais , Núcleo Hipotalâmico Paraventricular , Tri-Iodotironina/administração & dosagem , Núcleo Hipotalâmico Ventromedial , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Ratos Wistar
13.
J Neuroendocrinol ; 28(4)2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26791158

RESUMO

Defective control of endogenous glucose production is an important factor responsible for hyperglycaemia in the diabetic individual. During the past decade, progressively more evidence has appeared indicating a strong and potentially causal relationship between disturbances of the circadian system and defects of metabolic regulation, including glucose metabolism. The detrimental effects of disturbed circadian rhythms may have their origin in disturbances of the molecular clock mechanisms in peripheral organs, such as the pancreas and liver, or in the central brain clock in the hypothalamic suprachiasmatic nuclei (SCN). To assess the role of SCN output per se on glucose metabolism, we investigated (i) the effect of several SCN neurotransmitters on endogenous glucose production and (ii) the effect of SCN neuronal activity on hepatic and systemic insulin sensitivity. We show that silencing of SCN neuronal activity results in decreased hepatic insulin sensitivity and increased peripheral insulin sensitivity. Furthermore, both oxytocin neurones in the paraventricular nucleus of the hypothalamus (PVN) and orexin neurones in the lateral hypothalamus may be important targets for the SCN control of glucose metabolism. These data further highlight the role of the central clock in the pathophysiology of insulin resistance.


Assuntos
Glicemia/biossíntese , Resistência à Insulina/fisiologia , Neuropeptídeos/fisiologia , Orexinas/fisiologia , Ocitocina/fisiologia , Núcleo Supraquiasmático/fisiologia , Animais , Região Hipotalâmica Lateral/fisiologia , Fígado/metabolismo , Masculino , Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Ratos
14.
Sci Rep ; 6: 29094, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27388805

RESUMO

Sweet perception promotes food intake, whereas that of bitterness is inhibitory. Surprisingly, the expression of sweet G protein-coupled taste receptor (GPCTR) subunits (T1R2 and T1R3) and bitter GPCTRs (T2R116, T2R118, T2R138 and T2R104), as well as the α-subunits of the associated signalling complex (αGustducin, Gα14 and αTransducin), in oral and extra-oral tissues from lean and obese mice, remains poorly characterized. We focused on the impact of obesity on taste receptor expression in brain areas involved in energy homeostasis, namely the hypothalamus and brainstem. We demonstrate that many of the GPCTRs and α-subunits are co-expressed in these tissues and that obesity decreases expression of T1R3, T2R116, Gα14, αTrans and TRPM5. In vitro high levels of glucose caused a prominent down-regulation of T1R2 and Gα14 expression in cultured hypothalamic neuronal cells, leptin caused a transient down-regulation of T1R2 and T1R3 expression. Intriguingly, expression differences were also observed in other extra-oral tissues of lean and obese mice, most strikingly in the duodenum where obesity reduced the expression of most bitter and sweet receptors. In conclusion, obesity influences components of sweet and bitter taste sensing in the duodenum as well as regions of the mouse brain involved in energy homeostasis, including hypothalamus and brainstem.


Assuntos
Tronco Encefálico/metabolismo , Duodeno/metabolismo , Hipotálamo/metabolismo , Obesidade/genética , Receptores Acoplados a Proteínas G/genética , Animais , Tronco Encefálico/patologia , Duodeno/patologia , Metabolismo Energético/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Glucose/metabolismo , Glucose/farmacologia , Homeostase/genética , Hipotálamo/patologia , Leptina/metabolismo , Leptina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Obesidade/metabolismo , Obesidade/patologia , Cultura Primária de Células , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Paladar/genética , Papilas Gustativas/metabolismo , Papilas Gustativas/patologia
15.
Endocrinology ; 157(12): 4930-4942, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27911148

RESUMO

Estrogen deficiency after ovariectomy (OVX) results in increased adiposity and bone loss, which can be prevented by systemic 17-ß estradiol (E2) replacement. Studies in transgenic mice suggested that in addition to direct actions of estrogen in peripheral tissues, also estrogen signaling in the hypothalamus regulates fat distribution and bone metabolism. We hypothesized that the protective effect of systemic E2 on fat and bone metabolism in the OVX model is partly mediated through the ventromedial nucleus of the hypothalamus (VMH). To test this hypothesis, we determined the effect of systemic, central, and targeted VMH administration of E2 on fat and bone metabolism in OVX rats. Subcutaneous administration of E2 for 4 weeks decreased body weight, gonadal and perirenal fat, and bone formation rate in OVX rats. This effect was completely mimicked by intracerebroventricular injections of E2, once every 4 days for 4 weeks. Administration of E2 locally in the VMH by retromicrodialysis (3 h) acutely increased expression of the lipolytic gene hormone-sensitive lipase in gonadal and perirenal fat. Finally, chronic administration of E2 in the VMH for 8 weeks decreased perirenal fat but did not affect body weight, trabecular bone volume, or cortical thickness. In conclusion, we demonstrated that intracerebroventricular E2 replacement reduces body weight gain, ameliorates intraabdominal fat accumulation, and reduces bone formation in the OVX rats. E2 administration selectively in the VMH also reduced intraabdominal fat but did not affect bone metabolism.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Estradiol/administração & dosagem , Fêmur/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Núcleo Hipotalâmico Ventromedial/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Feminino , Fêmur/metabolismo , Ovariectomia , Ratos , Esterol Esterase/genética , Esterol Esterase/metabolismo
16.
Diabetes ; 50(6): 1237-43, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11375322

RESUMO

The suprachiasmatic nucleus (SCN), the biological clock, is responsible for a 24-h rhythm in plasma glucose concentrations, with the highest concentrations toward the beginning of the activity period. To investigate whether the SCN is also responsible for daily fluctuations in glucose uptake and to examine how these fluctuations relate to the rhythm in plasma glucose concentrations, SCN-intact rats and SCN-lesioned rats were injected intravenously with a glucose bolus at different time points. We found an increase in glucose uptake toward the beginning of the activity period, followed by a gradual reduction in glucose uptake toward the end of the activity period. The daily variation in glucose tolerance seemed not to be caused by fluctuations in insulin responses of the pancreas but by a daily variation in insulin sensitivity. Lesioning the SCN resulted in the disappearance of the daily fluctuation in glucose uptake and insulin sensitivity. Interestingly, SCN-lesioned rats showed an enhancement in glucose tolerance that could not be explained by higher insulin responses or enhanced insulin sensitivity. Therefore, these findings suggest a role for the SCN in insulin-independent glucose uptake. The present results further show that the daily rhythm in glucose tolerance follows the same pattern as the daily rhythm in plasma glucose concentrations. We hypothesized that the biological clock prepares the individual for the upcoming activity period by two separate mechanisms: increasing plasma glucose concentrations and making tissue more tolerant to glucose.


Assuntos
Ritmo Circadiano , Glucose/fisiologia , Núcleo Supraquiasmático/fisiologia , Animais , Glicemia/análise , Glucose/farmacocinética , Glucose/farmacologia , Teste de Tolerância a Glucose , Injeções Intravenosas , Insulina/sangue , Insulina/farmacologia , Resistência à Insulina , Masculino , Ratos , Ratos Wistar
17.
Lancet ; 362(9397): 1758-60, 2003 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-14643128

RESUMO

Abnormal body-fat distribution in HIV-1-associated adipose redistribution syndrome (HARS) remains unexplained at present. White adipose tissue is controlled by humoral factors and by neural regulation. Sympathetic innervation stimulates lipolysis, whereas parasympathetic innervation has an anabolic influence on white adipose tissue. Results of neuroanatomical studies showed a clear somatotopy with respect to autonomic control of white adipose tissue by both the sympathetic and parasympathetic branch, with separate sets of autonomic neurons innervating either the subcutaneous or the visceral fat compartment. Thus, the CNS is likely to be a key player in regulation of body-fat distribution. We propose that HARS is mediated by effects of antiretroviral treatment on the CNS and could indicate a change in autonomic balance resulting in redistribution of adipose tissue.


Assuntos
Tecido Adiposo/inervação , Fármacos Anti-HIV/farmacologia , Doenças do Sistema Nervoso Autônomo/induzido quimicamente , Doenças do Sistema Nervoso Autônomo/complicações , Sistema Nervoso Central/efeitos dos fármacos , Síndrome de Lipodistrofia Associada ao HIV/etiologia , HIV-1 , Humanos
18.
Neuroscience ; 130(3): 797-803, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15590161

RESUMO

The daily rhythm of melatonin synthesis in the rat pineal gland is controlled by the central biological clock, located in the suprachiasmatic nucleus (SCN), via a multi-synaptic pathway involving, successively, neurones of the paraventricular nucleus of the hypothalamus (PVN), sympathetic preganglionic neurones of the intermediolateral cell column of the spinal cord, and norepinephrine containing sympathetic neurones of the superior cervical ganglion. Recently, we showed that, in the rat, the SCN uses a combination of daytime inhibitory and nighttime stimulatory signals toward the PVN-pineal pathway in order to control the daily rhythm of melatonin synthesis, GABA being responsible for the daytime inhibitory message and glutamate for the nighttime stimulation. The present study was initiated to further check this concept, and to investigate the involvement of the inhibitory SCN output in the early morning circadian decline of melatonin release, with the hypothesis that, at dawn, the increased release of GABA onto pre-autonomic PVN neurones results in a diminished norepinephrine stimulation of the pineal, and ultimately an arrest of melatonin release. First, we established that prolonged norepinephrine stimulation of the pineal gland was indeed sufficient to prevent the early morning decline of melatonin release. Blockade of GABA-ergic signaling in the PVN at dawn could not prevent the early morning decline of melatonin completely. Therefore, these results show that an increased GABAergic inhibition of the PVN neurones that control the sympathetic innervation of the pineal gland, at dawn, is not sufficient to explain the early morning decline of melatonin release.


Assuntos
Ritmo Circadiano/fisiologia , Melatonina/biossíntese , Núcleo Supraquiasmático/fisiologia , Agonistas alfa-Adrenérgicos/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Animais , Bicuculina/farmacologia , Escuridão , Antagonistas GABAérgicos/farmacologia , Luz , Masculino , Microdiálise , Norepinefrina/farmacologia , Glândula Pineal/efeitos dos fármacos , Glândula Pineal/metabolismo , Radioimunoensaio , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia , Estimulação Química , Núcleo Supraquiasmático/efeitos dos fármacos
19.
J Biol Rhythms ; 13(1): 18-29, 1998 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9486840

RESUMO

The authors have shown previously that vasopressin (VP) release from suprachiasmatic nucleus (SCN) efferents in rats is important for the timing of the circadian activity of the hypothalamo-pituitary-adrenal (HPA) axis, resulting in a circadian rise in corticosterone at dusk. When meals are supplied at a fixed time during the light period, however, this normal circadian activity of the HPA axis is strongly modified. Under such a restricted feeding regimen, a corticosterone peak appears just before the daily meal in addition to the circadian corticosterone peak at dusk. This feeding-associated rise in corticosterone is regarded as an SCN-independent circadian rhythm because it is sustained in SCN-lesioned animals. Despite these previous results, the authors investigated a putative involvement of SCN-derived VP in the control of the prefeeding corticosterone peak by measuring the intranuclear release of VP in the SCN and plasma corticosterone levels in rats in ad libitum feeding conditions as well as in animals that were obliged to feed during a 2-h period in the middle of the light period. Restricted daytime feeding caused clear changes in the daily release pattern of VP from SCN terminals. Both a delayed onset of the diurnal rise and a premature decline of the elevated daytime levels were observed, but the acrophase of the VP rhythm was not phase shifted. Concerning the circadian corticosterone peak, no phase shift of its acrophase was observed either. It is concluded that (1) restricted daytime feeding does affect SCN activity, (2) intranuclear release of VP within the SCN is an important mechanism to amplify and synchronize the circadian rhythms as dictated by the light/dark-entrained circadian pacemaker, and (3) VP release observed in animals on restricted feeding is completely compatible with the previously proposed inhibitory action of SCN-derived VP on the HPA axis.


Assuntos
Ritmo Circadiano/fisiologia , Comportamento Alimentar/fisiologia , Núcleo Supraquiasmático/metabolismo , Vasopressinas/metabolismo , Animais , Corticosterona/sangue , Privação de Alimentos/fisiologia , Masculino , Microdiálise , Ratos , Ratos Wistar
20.
J Biol Rhythms ; 15(1): 57-66, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10677017

RESUMO

It is well established that in the absence of photic cues, the circadian rhythms of rodents can be readily phase-shifted and entrained by various nonphotic stimuli that induce increased levels of locomotor activity (i.e., benzodiazepines, a new running wheel, and limited food access). In the presence of an entraining light-dark (LD) cycle, however, the entraining effects of nonphotic stimuli on (parts of) the circadian oscillator are far less clear. Yet, an interesting finding is that appropriately timed exercise after a phase shift can accelerate the entrainment of circadian rhythms to the new LD cycle in both rodents and humans. The present study investigated whether restricted daytime feeding (RF) (1) induces a phase shift of the melatonin rhythm under entrained LD conditions and (2) accelerates resynchronization of circadian rhythms after an 8-h phase advance. Animals were adapted to RF with 2-h food access at the projected time of the new dark onset. Before and at several time points after the 8-h phase advance, nocturnal melatonin profiles were measured in RF animals and animals on ad libitum feeding (AL). In LD-entrained conditions, RF did not cause any significant changes in the nocturnal melatonin profile as compared to AL. Unexpectedly, after the 8-h phase advance, RF animals resynchronized more slowly to the new LD cycle than AL animals. These results indicate that prior entrainment to a nonphotic stimulus such as RF may "phase lock" the circadian oscillator and in that way hinder resynchronization after a phase shift.


Assuntos
Ritmo Circadiano/fisiologia , Privação de Alimentos/fisiologia , Melatonina/sangue , Animais , Química Encefálica/fisiologia , Escuridão , Luz , Masculino , Microdiálise , Análise Multivariada , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa