Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Proc Biol Sci ; 290(1990): 20221966, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36598014

RESUMO

Rapid evolutionary change during range expansions can lead to diverging range core and front populations, with the emergence of dispersal syndromes (coupled responses in dispersal and life-history traits). Besides intraspecific effects, range expansions may be impacted by interspecific interactions such as parasitism. Yet, despite the potentially large impact of parasites imposing additional selective pressures on the host, their role on range expansions remains largely unexplored. Using microcosm populations of the ciliate Paramecium caudatum and its bacterial parasite Holospora undulata, we studied experimental range expansions under parasite presence or absence. We found that the interaction of range expansion and parasite treatments affected the evolution of host dispersal syndromes. Namely, front populations showed different associations of population growth parameters and swimming behaviours than core populations, indicating divergent evolution. Parasitism reshaped trait associations, with hosts evolved in the presence of the parasite exhibiting overall increased resistance and reduced dispersal. Nonetheless, when comparing infected range core and front populations, we found a positive association, suggesting joint evolution of resistance and dispersal at the front. We conclude that host-parasite interactions during range expansions can change evolutionary trajectories; this in turn may feedback on the ecological dynamics of the range expansion and parasite epidemics.


Assuntos
Características de História de Vida , Parasitos , Animais , Síndrome , Interações Hospedeiro-Parasita , Dinâmica Populacional , Evolução Biológica
2.
Ecol Lett ; 25(12): 2675-2687, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36223413

RESUMO

Dispersal is a central biological process tightly integrated into life-histories, morphology, physiology and behaviour. Such associations, or syndromes, are anticipated to impact the eco-evolutionary dynamics of spatially structured populations, and cascade into ecosystem processes. As for dispersal on its own, these syndromes are likely neither fixed nor random, but conditional on the experienced environment. We experimentally studied how dispersal propensity varies with individuals' phenotype and local environmental harshness using 15 species ranging from protists to vertebrates. We reveal a general phenotypic dispersal syndrome across studied species, with dispersers being larger, more active and having a marked locomotion-oriented morphology and a strengthening of the link between dispersal and some phenotypic traits with environmental harshness. Our proof-of-concept metacommunity model further reveals cascading effects of context-dependent syndromes on the local and regional organisation of functional diversity. Our study opens new avenues to advance our understanding of the functioning of spatially structured populations, communities and ecosystems.


Assuntos
Evolução Biológica , Ecossistema , Animais , Síndrome , Fenótipo
3.
Ecol Lett ; 24(4): 739-750, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33583087

RESUMO

Exploitative parasites are predicted to evolve in highly connected populations or in expanding epidemics. However, many parasites rely on host dispersal to reach new populations, potentially causing conflict between local transmission and global spread. We performed experimental range expansions in interconnected microcosms of the protozoan Paramecium caudatum, allowing natural dispersal of hosts infected with the bacterial parasite Holospora undulata. Parasites from range front treatments facilitated host dispersal and were less virulent, but also invested less in horizontal transmission than parasites from range cores. These differences were consistent with parameter estimates derived from an epidemiological model fitted on population-level time-series data. Our results illustrate how dispersal selection can have profound consequences for the evolution of parasite life history and virulence. Decrypting the eco-evolutionary processes that shape parasite 'dispersal syndromes' may be important for the management of spreading epidemics in changing environments, biological invasions or in other spatial non-equilibrium settings.


Assuntos
Holosporaceae , Paramecium caudatum , Parasitos , Animais , Evolução Biológica , Interações Hospedeiro-Parasita , Paramecium caudatum/genética , Virulência
4.
J Evol Biol ; 34(8): 1316-1325, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34157176

RESUMO

Dispersal is a central determinant of spatial dynamics in communities and ecosystems, and various ecological factors can shape the evolution of constitutive and plastic dispersal behaviours. One important driver of dispersal plasticity is the biotic environment. Parasites, for example, influence the internal condition of infected hosts and define external patch quality. Thus, state-dependent dispersal may be determined by infection status and context-dependent dispersal by the abundance of infected hosts in the population. A prerequisite for such dispersal plasticity to evolve is a genetic basis on which natural selection can act. Using interconnected microcosms, we investigated dispersal in experimental populations of the freshwater protist Paramecium caudatum in response to the bacterial parasite Holospora undulata. For a collection of 20 natural host strains, we found substantial variation in constitutive dispersal and to a lesser degree in dispersal plasticity. First, infection tended to increase or decrease dispersal relative to uninfected controls, depending on strain identity, indicative of state-dependent dispersal plasticity. Infection additionally decreased host swimming speed compared to the uninfected counterparts. Second, for certain strains, there was a weak negative association between dispersal and infection prevalence, such that uninfected hosts dispersed less when infection was more frequent in the population, indicating context-dependent dispersal plasticity. Future experiments may test whether the observed differences in dispersal plasticity are sufficiently strong to be picked up by natural selection. The evolution of dispersal plasticity as a strategy to mitigate parasite effects spatially may have important implications for epidemiological dynamics.


Assuntos
Paramecium caudatum , Parasitos , Animais , Ecossistema , Interações Hospedeiro-Parasita , Paramecium caudatum/genética , Seleção Genética
5.
Proc Natl Acad Sci U S A ; 114(3): 546-551, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28049833

RESUMO

Cheats are a pervasive threat to public goods production in natural and human communities, as they benefit from the commons without contributing to it. Although ecological antagonisms such as predation, parasitism, competition, and abiotic environmental stress play key roles in shaping population biology, it is unknown how such stresses generally affect the ability of cheats to undermine cooperation. We used theory and experiments to address this question in the pathogenic bacterium, Pseudomonas aeruginosa Although public goods producers were selected against in all populations, our competition experiments showed that antibiotics significantly increased the advantage of nonproducers. Moreover, the dominance of nonproducers in mixed cultures was associated with higher resistance to antibiotics than in either monoculture. Mathematical modeling indicates that accentuated costs to producer phenotypes underlie the observed patterns. Mathematical analysis further shows how these patterns should generalize to other taxa with public goods behaviors. Our findings suggest that explaining the maintenance of cooperative public goods behaviors in certain natural systems will be more challenging than previously thought. Our results also have specific implications for the control of pathogenic bacteria using antibiotics and for understanding natural bacterial ecosystems, where subinhibitory concentrations of antimicrobials frequently occur.


Assuntos
Interações Microbianas/efeitos dos fármacos , Interações Microbianas/fisiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Antibacterianos/farmacologia , Evolução Biológica , Farmacorresistência Bacteriana , Humanos , Interações Microbianas/genética , Modelos Biológicos , Oligopeptídeos/biossíntese , Oligopeptídeos/genética , Pseudomonas aeruginosa/genética , Sideróforos/biossíntese , Sideróforos/genética , Estresse Fisiológico
6.
Mol Ecol ; 26(7): 1734-1746, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28222239

RESUMO

Evolutionary rescue (ER) occurs when populations, which have declined due to rapid environmental change, recover through genetic adaptation. The success of this process and the evolutionary trajectory of the population strongly depend on the rate of environmental change. Here we investigated how different rates of temperature increase (from 23 to 32 °C) affect population persistence and evolutionary change in experimental microcosms of the protozoan Paramecium caudatum. Consistent with theory on ER, we found that those populations experiencing the slowest rate of temperature increase were the least likely to become extinct and tended to be the best adapted to the new temperature environment. All high-temperature populations were more tolerant to severe heat stress (35, 37 °C), indicating a common mechanism of heat protection. High-temperature populations also had superior growth rates at optimum temperatures, leading to the absence of a pattern of local adaptation to control (23 °C) and high-temperature (32 °C) environments. However, high-temperature populations had reduced growth at low temperatures (5-9 °C), causing a shift in the temperature niche. In part, the observed evolutionary change can be explained by selection from standing variation. Using mitochondrial markers, we found complete divergence between control and high-temperature populations in the frequencies of six initial founder genotypes. Our results confirm basic predictions of ER and illustrate how adaptation to an extreme local environment can produce positive as well as negative correlated responses to selection over the entire range of the ecological niche.


Assuntos
Evolução Molecular , Paramecium/genética , Seleção Genética , Temperatura , Termotolerância/genética , Genótipo , Fenótipo , Dinâmica Populacional
7.
Mol Ecol ; 26(7): 1764-1777, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28092408

RESUMO

Numerous theoretical and experimental studies have investigated antagonistic co-evolution between parasites and their hosts. Although experimental tests of theory from a range of biological systems are largely concordant regarding the influence of several driving processes, we know little as to how mechanisms acting at the smallest scales (individual molecular and phenotypic changes) may result in the emergence of structures at larger scales, such as co-evolutionary dynamics and local adaptation. We capitalized on methods commonly employed in community ecology to quantify how the structure of community interaction matrices, so-called bipartite networks, reflected observed co-evolutionary dynamics, and how phages from these communities may or may not have adapted locally to their bacterial hosts. We found a consistent nested network structure for two phage types, one previously demonstrated to exhibit arms race co-evolutionary dynamics and the other fluctuating co-evolutionary dynamics. Both phages increased their host ranges through evolutionary time, but we found no evidence for a trade-off with impact on bacteria. Finally, only bacteria from the arms race phage showed local adaptation, and we provide preliminary evidence that these bacteria underwent (sometimes different) molecular changes in the wzy gene associated with the LPS receptor, while bacteria co-evolving with the fluctuating selection phage did not show local adaptation and had partial deletions of the pilF gene associated with type IV pili. We conclude that the structure of phage-bacteria interaction networks is not necessarily specific to co-evolutionary dynamics, and discuss hypotheses for why only one of the two phages was, nevertheless, locally adapted.


Assuntos
Adaptação Fisiológica/genética , Bactérias/genética , Bacteriófagos/genética , Evolução Molecular , Bactérias/virologia , Proteínas de Fímbrias/genética
8.
Proc Natl Acad Sci U S A ; 111(30): 11109-14, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25024215

RESUMO

Many antagonistic interactions between hosts and their parasites result in coevolution. Although coevolution can drive diversity and specificity within species, it is not known whether coevolutionary dynamics differ among functionally similar species. We present evidence of coevolution within simple communities of Pseudomonas aeruginosa PAO1 and a panel of bacteriophages. Pathogen identity affected coevolutionary dynamics. For five of six phages tested, time-shift assays revealed temporal peaks in bacterial resistance and phage infectivity, consistent with frequency-dependent selection (Red Queen dynamics). Two of the six phages also imposed additional directional selection, resulting in strongly increased resistance ranges over the entire length of the experiment (ca. 60 generations). Cross-resistance to these two phages was very high, independent of the coevolutionary history of the bacteria. We suggest that coevolutionary dynamics are associated with the nature of the receptor used by the phage for infection. Our results shed light on the coevolutionary process in simple communities and have practical application in the control of bacterial pathogens through the evolutionary training of phages, increasing their virulence and efficacy as therapeutics or disinfectants.

9.
Ecology ; 96(1): 284-90, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26236913

RESUMO

Dispersal can have positive and negative effects on metapopulation stability and persistence. One prediction is that high levels of dispersal synchronize density fluctuations between subpopulations. However, little is still known about how biotic and abiotic factors combine to modify the effects of dispersal rate on synchrony and metapopulation dynamics. In a fully factorial experimental design, we investigated the combined effects of (1) dispersal, (2) parasite infection, and (3) synchrony in temperature fluctuations on subpopulation synchrony, metapopulation instability, and minimum population size, in laboratory metapopulations of the ciliate Paramecium caudatum. Metapopulations, comprising two subpopulations linked by high or low levels of dispersal, were exposed to daily fluctuations in temperature between permissive (23 degrees C) and restrictive (5 degrees C) conditions. Infected metapopulations started the experiment with one subpopulation uninfected, while the other was infected at a prevalence of 5% with the bacterial parasite Holospora undulata. The temperature synchrony treatment involved subpopulations within a metapopulation following the same (synchronous temperatures) or different (asynchronous temperatures) temporal sequences. Population size was tracked over the 56-day experiment. We found that subpopulation density fluctuations were synchronized by high dispersal in infected metapopulations, and by synchronous temperatures in all metapopulations. Subpopulation synchrony was positively correlated with metapopulation instability and minimum metapopulation size, highlighting the multiple consequences of our treatments for metapopulation dynamics. Our results illustrate how parasites can generate dispersal-driven synchrony in non-cycling, declining populations. This "biotic forcing" via a natural enemy added to the temperature-dependent environmental forcing. We therefore conclude that predictions of metapopulation persistence in natural populations require simultaneous investigation of multiple ecological and epidemiological factors.


Assuntos
Holosporaceae/fisiologia , Interações Hospedeiro-Patógeno , Paramecium caudatum/patogenicidade , Dinâmica Populacional , Temperatura
10.
J Anim Ecol ; 84(3): 723-733, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25382389

RESUMO

Despite growing interest in ecological consequences of parasitism in food webs, relatively little is known about effects of parasites on long-term population dynamics of non-host species or about whether such effects are density or trait mediated. We studied a tri-trophic food chain comprised of (i) a bacterial basal resource (Serratia fonticola), (ii) an intermediate consumer (Paramecium caudatum), (iii) a top predator (Didinium nasutum) and (iv) a parasite of the intermediate consumer (Holospora undulata). A fully factorial experimental manipulation of predator and parasite presence/absence was combined with analyses of population dynamics, modelling and analyses of host (Paramecium) morphology and behaviour. Predation and parasitism each reduced the abundance of the intermediate consumer (Paramecium), and parasitism indirectly reduced the abundance of the basal resource (Serratia). However, in combination, predation and parasitism had non-additive effects on the abundance of the intermediate consumer, as well as on that of the basal resource. In both cases, the negative effect of parasitism seemed to be effaced by predation. Infection of the intermediate consumer reduced predator abundance. Modelling and additional experimentation revealed that this was most likely due to parasite reduction of intermediate host abundance (a density-mediated effect), as opposed to changes in predator functional or numerical response. Parasitism altered morphological and behavioural traits, by reducing host cell length and increasing the swimming speed of cells with moderate parasite loads. Additional tests showed no significant difference in Didinium feeding rate on infected and uninfected hosts, suggesting that the combination of these modifications does not affect host vulnerability to predation. However, estimated rates of encounter with Serratia based on these modifications were higher for infected Paramecium than for uninfected Paramecium. A mixture of density-mediated and trait-mediated indirect effects of parasitism on non-host species creates rich and complex possibilities for effects of parasites in food webs that should be included in assessments of possible impacts of parasite eradication or introduction.


Assuntos
Cilióforos/fisiologia , Cadeia Alimentar , Holosporaceae/fisiologia , Paramecium caudatum/fisiologia , Serratia/fisiologia , Animais , Comportamento Animal , Interações Hospedeiro-Patógeno , Paramecium caudatum/microbiologia , Dinâmica Populacional , Comportamento Predatório
11.
Trends Ecol Evol ; 39(7): 666-676, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38637209

RESUMO

Dispersal evolution modifies diverse spatial processes, such as range expansions or biological invasions of single species, but we are currently lacking a realistic vision for metacommunities. Focusing on antagonistic species interactions, we review existing theory of dispersal evolution between natural enemies, and explain how this might be relevant for classic themes in host-parasite evolutionary ecology, namely virulence evolution or local adaptation. Specifically, we highlight the importance of considering the simultaneous (co)evolution of dispersal and interaction traits. Linking such multi-trait evolution with reciprocal demographic and epidemiological feedbacks might change basic predictions about coevolutionary processes and spatial dynamics of interacting species. Future challenges concern the integration of system-specific disease ecology or spatial modifiers, such as spatial network structure or environmental heterogeneity.


Assuntos
Evolução Biológica , Interações Hospedeiro-Parasita , Animais , Distribuição Animal , Dinâmica Populacional , Ecossistema
12.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230142, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38913061

RESUMO

Dispersal is a well-recognized driver of ecological and evolutionary dynamics, and simultaneously an evolving trait. Dispersal evolution has traditionally been studied in single-species metapopulations so that it remains unclear how dispersal evolves in metacommunities and metafoodwebs, which are characterized by a multitude of species interactions. Since most natural systems are both species-rich and spatially structured, this knowledge gap should be bridged. Here, we discuss whether knowledge from dispersal evolutionary ecology established in single-species systems holds in metacommunities and metafoodwebs and we highlight generally valid and fundamental principles. Most biotic interactions form the backdrop to the ecological theatre for the evolutionary dispersal play because interactions mediate patterns of fitness expectations across space and time. While this allows for a simple transposition of certain known principles to a multispecies context, other drivers may require more complex transpositions, or might not be transferred. We discuss an important quantitative modulator of dispersal evolution-increased trait dimensionality of biodiverse meta-systems-and an additional driver: co-dispersal. We speculate that scale and selection pressure mismatches owing to co-dispersal, together with increased trait dimensionality, may lead to a slower and more 'diffuse' evolution in biodiverse meta-systems. Open questions and potential consequences in both ecological and evolutionary terms call for more investigation. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Assuntos
Distribuição Animal , Evolução Biológica , Animais , Ecossistema
13.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230127, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38913065

RESUMO

Context-dependent dispersal allows organisms to seek and settle in habitats improving their fitness. Despite the importance of species interactions in determining fitness, a quantitative synthesis of how they affect dispersal is lacking. We present a meta-analysis asking (i) whether the interaction experienced and/or perceived by a focal species (detrimental interaction with predators, competitors, parasites or beneficial interaction with resources, hosts, mutualists) affects its dispersal; and (ii) how the species' ecological and biological background affects the direction and strength of this interaction-dependent dispersal. After a systematic search focusing on actively dispersing species, we extracted 397 effect sizes from 118 empirical studies encompassing 221 species pairs; arthropods were best represented, followed by vertebrates, protists and others. Detrimental species interactions increased the focal species' dispersal (adjusted effect: 0.33 [0.06, 0.60]), while beneficial interactions decreased it (-0.55 [-0.92, -0.17]). The effect depended on the dispersal phase, with detrimental interactors having opposite impacts on emigration and transience. Interaction-dependent dispersal was negatively related to species' interaction strength, and depended on the global community composition, with cues of presence having stronger effects than the presence of the interactor and the ecological complexity of the community. Our work demonstrates the importance of interspecific interactions on dispersal plasticity, with consequences for metacommunity dynamics.This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Assuntos
Distribuição Animal , Animais , Ecossistema , Vertebrados/fisiologia
14.
Ecol Lett ; 16(9): 1195-205, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23848550

RESUMO

Patterns of local adaptation are expected to emerge when selection is spatially heterogeneous and sufficiently strong relative to the action of other evolutionary forces. The observation of local adaptation thus provides important insight into evolutionary processes and the adaptive divergence of populations. The detection of local adaptation, however, suffers from several conceptual, statistical and methodological issues. Here, we provide practical recommendations regarding (1) the definition of local adaptation, (2) the analysis of transplant experiments and (3) the optimisation of the experimental design of local adaptation studies. Together, these recommendations provide a unified approach for measuring local adaptation and understanding the adaptive divergence of populations in a wide range of biological systems.


Assuntos
Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Evolução Biológica , Ecossistema , Modelos Biológicos
15.
Proc Biol Sci ; 280(1769): 20131747, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23966645

RESUMO

Environmental fluctuations are important for parasite spread and persistence. However, the effects of the spatial and temporal structure of environmental fluctuations on host-parasite dynamics are not well understood. Temporal fluctuations can be random but positively autocorrelated, such that the environment is similar to the recent past (red noise), or random and uncorrelated with the past (white noise). We imposed red or white temporal temperature fluctuations on experimental metapopulations of Paramecium caudatum, experiencing an epidemic of the bacterial parasite Holospora undulata. Metapopulations (two subpopulations linked by migration) experienced fluctuations between stressful (5 °C) and permissive (23 °C) conditions following red or white temporal sequences. Spatial variation in temperature fluctuations was implemented by exposing subpopulations to the same (synchronous temperatures) or different (asynchronous temperatures) temporal sequences. Red noise, compared with white noise, enhanced parasite persistence. Despite this, red noise coupled with asynchronous temperatures allowed infected host populations to maintain sizes equivalent to uninfected populations. It is likely that this occurs because subpopulations in permissive conditions rescue declining subpopulations in stressful conditions. We show how patterns of temporal and spatial environmental fluctuations can impact parasite spread and host population abundance. We conclude that accurate prediction of parasite epidemics may require realistic models of environmental noise.


Assuntos
Meio Ambiente , Holosporaceae/fisiologia , Paramecium caudatum/microbiologia , Paramecium caudatum/fisiologia , Processos Estocásticos , Temperatura , Fatores de Tempo
16.
Evol Lett ; 7(3): 121-131, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37251588

RESUMO

Predicting range expansion dynamics is an important goal of both fundamental and applied research in conservation and global change biology. However, this is challenging if ecological and evolutionary processes occur on the same time scale. Using the freshwater ciliate Paramecium caudatum, we combined experimental evolution and mathematical modeling to assess the predictability of evolutionary change during range expansions. In the experiment, we followed ecological dynamics and trait evolution in independently replicated microcosm populations in range core and front treatments, where episodes of natural dispersal alternated with periods of population growth. These eco-evolutionary conditions were recreated in a predictive mathematical model, parametrized with dispersal and growth data of the 20 founder strains in the experiment. We found that short-term evolution was driven by selection for increased dispersal in the front treatment and general selection for higher growth rates in all treatments. There was a good quantitative match between predicted and observed trait changes. Phenotypic divergence was further mirrored by genetic divergence between range core and front treatments. In each treatment, we found the repeated fixation of the same cytochrome c oxidase I (COI) marker genotype, carried by strains that also were the most likely winners in our model. Long-term evolution in the experimental range front lines resulted in the emergence of a dispersal syndrome, namely a competition-colonization trade-off. Altogether, both model and experiment highlight the potential importance of dispersal evolution as a driver of range expansions. Thus, evolution at range fronts may follow predictable trajectories, at least for simple scenarios, and predicting these dynamics may be possible from knowledge of few key parameters.

17.
Ecol Lett ; 15(3): 186-92, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22221658

RESUMO

Epidemiology in host meta-populations depends on parasite ability to disperse between, establish and persist in distinct sub-populations of hosts. We studied the genetic factors determining the short-term establishment, and long-term maintenance, of pathogens introduced by infected hosts (i.e. carriers) into recipient populations. We used experimental populations of the freshwater ciliate Paramecium caudatum and its bacterial parasite Holospora undulata. Parasite short-term spread (approximately one horizontal transmission cycle) was affected mainly by carrier genotype, and its interactions with parasite and recipient genotypes. By contrast, parasite longer term spread (2-3 horizontal transmission cycles) was mostly determined by parasite isolate. Importantly, measures of parasite short-term success (reproductive number, R) were not good predictors for longer term prevalence, probably because of the specific interactions between host and parasite genotypes. Analogous to variation in vectorial capacity and super-spreader occurrence, two crucial components of epidemiology, we show that carrier genotype can also affect disease spread within meta-populations.


Assuntos
Holosporaceae/patogenicidade , Interações Hospedeiro-Patógeno/genética , Paramecium caudatum/genética , Paramecium caudatum/microbiologia , Infecções Bacterianas/transmissão , Água Doce/parasitologia , Genótipo
18.
Virus Evol ; 8(1): veac039, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600094

RESUMO

The genetic diversity of viral populations is a key driver of the spatial and temporal diffusion of viruses; yet, studying the diversity of whole genomes from natural populations still remains a challenge. Phylodynamic approaches are commonly used for RNA viruses harboring small genomes but have only rarely been applied to DNA viruses with larger genomes. Here, we used the Pacific oyster mortality syndrome (a disease that affects oyster farms around the world) as a model to study the genetic diversity of its causative agent, the Ostreid herpesvirus 1 (OsHV-1) in the three main French oyster-farming areas. Using ultra-deep sequencing on individual moribund oysters and an innovative combination of bioinformatics tools, we de novo assembled twenty-one OsHV-1 new genomes. Combining quantification of major and minor genetic variations, phylogenetic analysis, and ancestral state reconstruction of discrete traits approaches, we assessed the connectivity of OsHV-1 viral populations between the three oyster-farming areas. Our results suggest that the Marennes-Oléron Bay represents the main source of OsHV-1 diversity, from where the virus has dispersed to other farming areas, a scenario consistent with current practices of oyster transfers in France. We demonstrate that phylodynamic approaches can be applied to aquatic DNA viruses to determine how epidemiological, immunological, and evolutionary processes act and potentially interact to shape their diversity patterns.

19.
Proc Biol Sci ; 278(1723): 3412-20, 2011 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-21450730

RESUMO

The environment is rarely constant and organisms are exposed to temporal and spatial variations that impact their life histories and inter-species interactions. It is important to understand how such variations affect epidemiological dynamics in host-parasite systems. We explored effects of temporal variation in temperature on experimental microcosm populations of the ciliate Paramecium caudatum and its bacterial parasite Holospora undulata. Infected and uninfected populations of two P. caudatum genotypes were created and four constant temperature treatments (26°C, 28°C, 30°C and 32°C) compared with four variable treatments with the same mean temperatures. Variable temperature treatments were achieved by alternating populations between permissive (23°C) and restrictive (35°C) conditions daily over 30 days. Variable conditions and high temperatures caused greater declines in Paramecium populations, greater fluctuations in population size and higher incidence of extinction. The additional effect of parasite infection was additive and enhanced the negative effects of the variable environment and higher temperatures by up to 50 per cent. The variable environment and high temperatures also caused a decrease in parasite prevalence (up to 40%) and an increase in extinction (absence of detection) (up to 30%). The host genotypes responded similarly to the different environmental stresses and their effect on parasite traits were generally in the same direction. This work provides, to our knowledge, the first experimental demonstration that epidemiological dynamics are influenced by environmental variation. We also emphasize the need to consider environmental variance, as well as means, when trying to understand, or predict population dynamics or range.


Assuntos
Meio Ambiente , Holosporaceae/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Paramecium caudatum/microbiologia , Paramecium caudatum/fisiologia , Temperatura , Análise de Variância , Animais , Genótipo , Modelos Estatísticos , Paramecium caudatum/genética , Dinâmica Populacional , Fatores de Tempo
20.
Biol Lett ; 7(3): 327-9, 2011 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-20961885

RESUMO

Parasitic infection can modify host mobility and consequently their dispersal capacity. We experimentally investigated this idea using the ciliate Paramecium caudatum and its bacterial parasite Holospora undulata. We compared the short-distance dispersal of infected and uninfected populations in interconnected microcosms. Infection reduced the proportion of hosts dispersing, with levels differing among host clones. Host populations with higher densities showed lower dispersal, possibly owing to social aggregation behaviour. Parasite isolates that depleted host populations most had the lowest impact on host dispersal. Parasite-induced modification of dispersal may have consequences for the spatial distribution of disease, host and parasite genetic population structure, and coevolution.


Assuntos
Holosporaceae/fisiologia , Interações Hospedeiro-Parasita , Paramecium caudatum/microbiologia , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa