Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 81(2): 281-292.e8, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33296676

RESUMO

Rho is a general transcription termination factor playing essential roles in RNA polymerase (RNAP) recycling, gene regulation, and genomic stability in most bacteria. Traditional models of transcription termination postulate that hexameric Rho loads onto RNA prior to contacting RNAP and then translocates along the transcript in pursuit of the moving RNAP to pull RNA from it. Here, we report the cryoelectron microscopy (cryo-EM) structures of two termination process intermediates. Prior to interacting with RNA, Rho forms a specific "pre-termination complex" (PTC) with RNAP and elongation factors NusA and NusG, which stabilize the PTC. RNA exiting RNAP interacts with NusA before entering the central channel of Rho from the distal C-terminal side of the ring. We map the principal interactions in the PTC and demonstrate their critical role in termination. Our results support a mechanism in which the formation of a persistent PTC is a prerequisite for termination.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Fatores de Alongamento de Peptídeos/química , Fatores de Transcrição/química , Terminação da Transcrição Genética , Fatores de Elongação da Transcrição/química , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Microscopia Crioeletrônica , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Modelos Moleculares , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
2.
Nature ; 604(7904): 152-159, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35355008

RESUMO

Transcription-coupled DNA repair (TCR) is presumed to be a minor sub-pathway of nucleotide excision repair (NER) in bacteria. Global genomic repair is thought to perform the bulk of repair independently of transcription. TCR is also believed to be mediated exclusively by Mfd-a DNA translocase of a marginal NER phenotype1-3. Here we combined in cellulo cross-linking mass spectrometry with structural, biochemical and genetic approaches to map the interactions within the TCR complex (TCRC) and to determine the actual sequence of events that leads to NER in vivo. We show that RNA polymerase (RNAP) serves as the primary sensor of DNA damage and acts as a platform for the recruitment of NER enzymes. UvrA and UvrD associate with RNAP continuously, forming a surveillance pre-TCRC. In response to DNA damage, pre-TCRC recruits a second UvrD monomer to form a helicase-competent UvrD dimer that promotes backtracking of the TCRC. The weakening of UvrD-RNAP interactions renders cells sensitive to genotoxic stress. TCRC then recruits a second UvrA molecule and UvrB to initiate the repair process. Contrary to the conventional view, we show that TCR accounts for the vast majority of chromosomal repair events; that is, TCR thoroughly dominates over global genomic repair. We also show that TCR is largely independent of Mfd. We propose that Mfd has an indirect role in this process: it participates in removing obstructive RNAPs in front of TCRCs and also in recovering TCRCs from backtracking after repair has been completed.


Assuntos
Proteínas de Bactérias , Reparo do DNA , Escherichia coli , Transcrição Gênica , Adenosina Trifosfatases , Bactérias/genética , Proteínas de Bactérias/genética , Dano ao DNA , DNA Helicases , Proteínas de Ligação a DNA , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli
3.
Nature ; 505(7483): 372-7, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24402227

RESUMO

UvrD helicase is required for nucleotide excision repair, although its role in this process is not well defined. Here we show that Escherichia coli UvrD binds RNA polymerase during transcription elongation and, using its helicase/translocase activity, forces RNA polymerase to slide backward along DNA. By inducing backtracking, UvrD exposes DNA lesions shielded by blocked RNA polymerase, allowing nucleotide excision repair enzymes to gain access to sites of damage. Our results establish UvrD as a bona fide transcription elongation factor that contributes to genomic integrity by resolving conflicts between transcription and DNA repair complexes. Furthermore, we show that the elongation factor NusA cooperates with UvrD in coupling transcription to DNA repair by promoting backtracking and recruiting nucleotide excision repair enzymes to exposed lesions. Because backtracking is a shared feature of all cellular RNA polymerases, we propose that this mechanism enables RNA polymerases to function as global DNA damage scanners in bacteria and eukaryotes.


Assuntos
DNA Helicases/metabolismo , Reparo do DNA , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Movimento , Sequência de Bases , DNA/química , DNA/metabolismo , Dano ao DNA , RNA Polimerases Dirigidas por DNA/química , Escherichia coli/enzimologia , Escherichia coli/genética , Modelos Moleculares , Dados de Sequência Molecular , Fatores de Alongamento de Peptídeos/metabolismo , Ligação Proteica , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição
4.
Proc Natl Acad Sci U S A ; 107(51): 22117-21, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21098258

RESUMO

Editing/proofreading by aminoacyl-tRNA synthetases is an important quality control step in the accurate translation of the genetic code that removes noncognate amino acids attached to tRNA. Defects in the process of editing result in disease conditions including neurodegeneration. While proofreading, the cognate amino acids larger by a methyl group are generally thought to be sterically rejected by the editing modules as envisaged by the "Double-Sieve Model." Strikingly using solution based direct binding studies, NMR-heteronuclear single quantum coherence (HSQC) and isothermal titration calorimetry experiments, with an editing domain of threonyl-tRNA synthetase, we show that the cognate substrate can gain access and bind to the editing pocket. High-resolution crystal structural analyses reveal that functional positioning of substrates rather than steric exclusion is the key for the mechanism of discrimination. A strategically positioned "catalytic water" molecule is excluded to avoid hydrolysis of the cognate substrate using a "RNA mediated substrate-assisted catalysis mechanism" at the editing site. The mechanistic proof of the critical role of RNA in proofreading activity is a completely unique solution to the problem of cognate-noncognate selection mechanism.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Biossíntese de Proteínas/fisiologia , Pyrococcus abyssi/enzimologia , Treonina-tRNA Ligase/química , Treonina-tRNA Ligase/metabolismo , Proteínas Arqueais/genética , Catálise , Domínio Catalítico , Cristalografia por Raios X , Humanos , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , RNA Arqueal/química , RNA Arqueal/genética , RNA Arqueal/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Especificidade por Substrato , Treonina-tRNA Ligase/genética
5.
Biochim Biophys Acta ; 1784(12): 1949-58, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18634909

RESUMO

S-adenosylmethionine (SAM) synthetase (EC 2.5.1.6) catalyzes the synthesis of S-adenosylmethionine using l-methionine and ATP as substrates. SAM synthetase gene (metE) from Bacillus subtilis was cloned and over-expressed, for the first time, in the heterologus host Escherichia coli as an active enzyme. Size-exclusion chromatography (SEC) revealed a molecular weight of ~180 kDa, suggesting that the enzyme is a homotetramer stabilized by non-covalent interactions. SAM synthetase exhibited optimal activity at pH 8.0 and 45 degrees C with the requirement of divalent cation Mg(2+), and stimulated by the monovalent cation K(+). The enzyme followed sequential mechanism with a V(max) of 0.362 micromol/min/mg, and a K(m) of 920 microM and 260 microM for ATP and l-methionine, respectively. The urea-induced unfolding equilibrium of the recombinant enzyme revealed a multistate process, comprising partially unfolded tetramer, structural dimer, structural monomer and completely unfolded monomer, as evidenced by intrinsic and extrinsic fluorescence, circular dichroism (CD) and SEC. Absence of trimer in the SEC implicates that the enzyme is a dimer of dimer. Concordance between results of SEC and enzyme activity in the presence of urea amply establishes that tetramer alone with intersubunit active site(s) exhibits enzyme activity.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Metionina Adenosiltransferase/química , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Domínio Catalítico/fisiologia , Escherichia coli/genética , Expressão Gênica , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Magnésio/química , Metionina Adenosiltransferase/genética , Potássio/química , Dobramento de Proteína , Estrutura Quaternária de Proteína/fisiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Ureia/química
6.
Methods Enzymol ; 591: 287-306, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28645373

RESUMO

Transcription-coupled repair (TCR) serves an important role in preserving genome integrity and maintaining fidelity of replication. Coupling transcription to DNA repair requires a coordinated action of several factors, including transcribing RNA polymerase and various transcription modulators and repair proteins. To study TCR in molecular detail, it is important to employ defined protein complexes in vitro and defined genetic backgrounds in vivo. In this chapter, we present methods to interrogate various aspects of TCR at different stages of repair. We describe promoter-initiated and nucleic acid scaffold-initiated transcription as valid approaches to recapitulate various stages of TCR, and discuss their strengths and weaknesses. We also outline an approach to study TCR in its cellular context using Escherichia coli as a model system.


Assuntos
Reparo do DNA , Transcrição Gênica , Ácidos Nucleicos/química , Regiões Promotoras Genéticas
7.
Science ; 352(6288): 993-6, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27199428

RESUMO

The small molecule alarmone (p)ppGpp mediates bacterial adaptation to nutrient deprivation by altering the initiation properties of RNA polymerase (RNAP). ppGpp is generated in Escherichia coli by two related enzymes, RelA and SpoT. We show that ppGpp is robustly, but transiently, induced in response to DNA damage and is required for efficient nucleotide excision DNA repair (NER). This explains why relA-spoT-deficient cells are sensitive to diverse genotoxic agents and ultraviolet radiation, whereas ppGpp induction renders them more resistant to such challenges. The mechanism of DNA protection by ppGpp involves promotion of UvrD-mediated RNAP backtracking. By rendering RNAP backtracking-prone, ppGpp couples transcription to DNA repair and prompts transitions between repair and recovery states.


Assuntos
Reparo do DNA , Escherichia coli/genética , Guanosina Tetrafosfato/metabolismo , Transcrição Gênica , Dano ao DNA , DNA Helicases/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo
8.
Curr Opin Microbiol ; 24: 15-20, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25596348

RESUMO

Nucleotide excision repair (NER) is an evolutionarily conserved, multistep process that can detect a wide variety of DNA lesions. Transcription coupled repair (TCR) is a subpathway of NER that repairs the transcribed DNA strand faster than the rest of the genome. RNA polymerase (RNAP) stalled at DNA lesions mediates the recruitment of NER enzymes to the damage site. In this review we focus on a newly identified bacterial TCR pathway in which the NER enzyme UvrD, in conjunction with NusA, plays a major role in initiating the repair process. We discuss the tradeoff between the new and conventional models of TCR, how and when each pathway operates to repair DNA damage, and the necessity of pervasive transcription in maintaining genome integrity.


Assuntos
Bactérias/enzimologia , Reparo do DNA , DNA Bacteriano/genética , RNA Polimerases Dirigidas por DNA/genética , Transcrição Gênica , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dano ao DNA , RNA Polimerases Dirigidas por DNA/metabolismo , Raios Ultravioleta/efeitos adversos
9.
Nat Commun ; 6: 7552, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26113036

RESUMO

Proofreading modules of aminoacyl-tRNA synthetases are responsible for enforcing a high fidelity during translation of the genetic code. They use strategically positioned side chains for specifically targeting incorrect aminoacyl-tRNAs. Here, we show that a unique proofreading module possessing a D-aminoacyl-tRNA deacylase fold does not use side chains for imparting specificity or for catalysis, the two hallmark activities of enzymes. We show, using three distinct archaea, that a side-chain-stripped recognition site is fully capable of solving a subtle discrimination problem. While biochemical probing establishes that RNA plays the catalytic role, mechanistic insights from multiple high-resolution snapshots reveal that differential remodelling of the catalytic core at the RNA-peptide interface provides the determinants for correct proofreading activity. The functional crosstalk between RNA and protein elucidated here suggests how primordial enzyme functions could have emerged on RNA-peptide scaffolds before recruitment of specific side chains.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Edição de RNA/fisiologia , RNA/metabolismo , Aminoacil-tRNA Sintetases/genética , Proteínas de Bactérias/genética , Domínio Catalítico , Clonagem Molecular , Regulação Enzimológica da Expressão Gênica , Modelos Moleculares , Conformação Proteica , Processamento de Proteína Pós-Traducional
10.
AMB Express ; 3: 40, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23890127

RESUMO

A genetically engineered strain of Pichia pastoris expressing S-adenosylmethionine synthetase gene from Saccharomyces cerevisiae under the control of AOX 1 promoter was developed. Induction of recombinant strain with 1% methanol resulted in the expression of SAM2 protein of ~ 42 kDa, whereas control GS115 showed no such band. Further, the recombinant strain showed 17-fold higher enzyme activity over control. Shake flask cultivation of engineered P. pastoris in BMGY medium supplemented with 1% L-methionine yielded 28 g/L wet cell weight and 0.6 g/L S-adenosylmethionine, whereas control (transformants with vector alone) with similar wet cell weight under identical conditions accumulated 0.018 g/L. The clone cultured in the bioreactor containing enriched methionine medium showed increased WCW (117 g/L) as compared to shake flask cultures and yielded 2.4 g/L S-adenosylmethionine. In spite of expression of SAM 2 gene up to 90 h, S-adenosylmethionine accumulation tended to plateau after 72 h, presumably because of the limited ATP available in the cells at stationery phase. The recombinant P pastoris seems promising as potential source for industrial production of S-adenosylmethionine.

11.
Elife ; 2: e01519, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24302572

RESUMO

The biological macromolecular world is homochiral and effective enforcement and perpetuation of this homochirality is essential for cell survival. In this study, we present the mechanistic basis of a configuration-specific enzyme that selectively removes D-amino acids erroneously coupled to tRNAs. The crystal structure of dimeric D-aminoacyl-tRNA deacylase (DTD) from Plasmodium falciparum in complex with a substrate-mimicking analog shows how it uses an invariant 'cross-subunit' Gly-cisPro dipeptide to capture the chiral centre of incoming D-aminoacyl-tRNA. While no protein residues are directly involved in catalysis, the unique side chain-independent mode of substrate recognition provides a clear explanation for DTD's ability to act on multiple D-amino acids. The strict chiral specificity elegantly explains how the enriched cellular pool of L-aminoacyl-tRNAs escapes this proofreading step. The study thus provides insights into a fundamental enantioselection process and elucidates a chiral enforcement mechanism with a crucial role in preventing D-amino acid infiltration during the evolution of translational apparatus. DOI: http://dx.doi.org/10.7554/eLife.01519.001.


Assuntos
Código Genético , Estereoisomerismo , Adenosina/metabolismo , Domínio Catalítico , Cristalização , Dimerização , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa