Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(19): 10520-10529, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32332166

RESUMO

In the opportunistic pathogen Pseudomonas aeruginosa, RsmA is an RNA-binding protein that plays critical roles in the control of virulence, interbacterial interactions, and biofilm formation. Although RsmA is thought to exert its regulatory effects by binding full-length transcripts, the extent to which RsmA binds nascent transcripts has not been addressed. Moreover, which transcripts are direct targets of this key posttranscriptional regulator is largely unknown. Using chromatin immunoprecipitation coupled with high-throughput DNA sequencing, with cells grown in the presence and absence of the RNA polymerase inhibitor rifampicin, we identify hundreds of nascent transcripts that RsmA associates with in P. aeruginosa We also find that the RNA chaperone Hfq targets a subset of those nascent transcripts that RsmA associates with and that the two RNA-binding proteins can exert regulatory effects on common targets. Our findings establish that RsmA associates with many transcripts as they are being synthesized in P. aeruginosa, identify the transcripts targeted by RsmA, and suggest that RsmA and Hfq may act in a combinatorial fashion on certain transcripts. The binding of posttranscriptional regulators to nascent transcripts may be commonplace in bacteria where distinct regulators can function alone or in concert to achieve control over the translation of transcripts as soon as they emerge from RNA polymerase.


Assuntos
Pseudomonas aeruginosa/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Pseudomonas aeruginosa/metabolismo , Processamento Pós-Transcricional do RNA/genética , RNA Bacteriano/genética , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Virulência
2.
Proc Natl Acad Sci U S A ; 112(27): 8433-8, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26100878

RESUMO

In mammalian cells, programmed cell death (PCD) plays important roles in development, in the removal of damaged cells, and in fighting bacterial infections. Although widespread among multicellular organisms, there are relatively few documented instances of PCD in bacteria. Here we describe a potential PCD pathway in Pseudomonas aeruginosa that enhances the ability of the bacterium to cause disease in a lung infection model. Activation of the system can occur in a subset of cells in response to DNA damage through cleavage of an essential transcription regulator we call AlpR. Cleavage of AlpR triggers a cell lysis program through de-repression of the alpA gene, which encodes a positive regulator that activates expression of the alpBCDE lysis cassette. Although this is lethal to the individual cell in which it occurs, we find it benefits the population as a whole during infection of a mammalian host. Thus, host and pathogen each may use PCD as a survival-promoting strategy. We suggest that activation of the Alp cell lysis pathway is a disease-enhancing response to bacterial DNA damage inflicted by the host immune system.


Assuntos
Proteínas de Bactérias/genética , Bacteriólise/genética , Pseudomonas aeruginosa/genética , Transdução de Sinais/genética , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/metabolismo , Western Blotting , Regulação Bacteriana da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Viabilidade Microbiana/genética , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Óperon/genética , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Imagem com Lapso de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência/genética
3.
PLoS Biol ; 12(10): e1001977, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25350732

RESUMO

Cells must coordinate DNA replication with cell division, especially during episodes of DNA damage. The paradigm for cell division control following DNA damage in bacteria involves the SOS response where cleavage of the transcriptional repressor LexA induces a division inhibitor. However, in Caulobacter crescentus, cells lacking the primary SOS-regulated inhibitor, sidA, can often still delay division post-damage. Here we identify didA, a second cell division inhibitor that is induced by DNA damage, but in an SOS-independent manner. Together, DidA and SidA inhibit division, such that cells lacking both inhibitors divide prematurely following DNA damage, with lethal consequences. We show that DidA does not disrupt assembly of the division machinery and instead binds the essential division protein FtsN to block cytokinesis. Intriguingly, mutations in FtsW and FtsI, which drive the synthesis of septal cell wall material, can suppress the activity of both SidA and DidA, likely by causing the FtsW/I/N complex to hyperactively initiate cell division. Finally, we identify a transcription factor, DriD, that drives the SOS-independent transcription of didA following DNA damage.


Assuntos
Proteínas de Bactérias/metabolismo , Caulobacter crescentus/fisiologia , Divisão Celular , Dano ao DNA , Proteínas de Membrana/metabolismo , Proteínas de Bactérias/genética , Pontos de Checagem do Ciclo Celular , Proteínas de Membrana/genética , Mutação de Sentido Incorreto , Supressão Genética , Fatores de Transcrição/metabolismo
4.
Nat Commun ; 12(1): 1702, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731715

RESUMO

In Pseudomonas aeruginosa the alp system encodes a programmed cell death pathway that is switched on in a subset of cells in response to DNA damage and is linked to the virulence of the organism. Here we show that the central regulator of this pathway, AlpA, exerts its effects by acting as an antiterminator rather than a transcription activator. In particular, we present evidence that AlpA positively regulates the alpBCDE cell lysis genes, as well as genes in a second newly identified target locus, by recognizing specific DNA sites within the promoter, then binding RNA polymerase directly and allowing it to bypass intrinsic terminators positioned downstream. AlpA thus functions in a mechanistically unusual manner to control the expression of virulence genes in this opportunistic pathogen.


Assuntos
Apoptose/genética , Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/genética , Transcrição Gênica/genética , Proteínas de Bactérias/genética , Bacteriólise/genética , Sítios de Ligação , Dano ao DNA , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Guanosina Tetrafosfato/metabolismo , Óperon/genética , Regiões Promotoras Genéticas , Ligação Proteica , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Regiões Terminadoras Genéticas , Virulência/genética
5.
Cell Rep ; 23(5): 1543-1552, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29719264

RESUMO

Hfq is an RNA chaperone and an important post-transcriptional regulator in bacteria. Using chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-seq), we show that Hfq associates with hundreds of different regions of the Pseudomonas aeruginosa chromosome. These associations are abolished when transcription is inhibited, indicating that they reflect Hfq binding to transcripts during their synthesis. Analogous ChIP-seq analyses with the post-transcriptional regulator Crc reveal that it associates with many of the same nascent transcripts as Hfq, an activity we show is Hfq dependent. Our findings indicate that Hfq binds many transcripts co-transcriptionally in P. aeruginosa, often in concert with Crc, and uncover direct regulatory targets of these proteins. They also highlight a general approach for studying the interactions of RNA-binding proteins with nascent transcripts in bacteria. The binding of post-transcriptional regulators to nascent mRNAs may represent a prevalent means of controlling translation in bacteria where transcription and translation are coupled.


Assuntos
Fator Proteico 1 do Hospedeiro/metabolismo , Pseudomonas aeruginosa/metabolismo , RNA Bacteriano/biossíntese , Transcrição Gênica/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fator Proteico 1 do Hospedeiro/genética , Pseudomonas aeruginosa/genética , RNA Bacteriano/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa